Exercise Sheet 1

Tibor Szabó
Discrete Mathematics II, Winter 2011/12
Due date: October 25th (Tuesday) by 10:00, at the end of the lecture.

Problem 1 Give two proofs that the Petersen graph is nonplanar.
(a) Using Kuratowski's Theorem.
(b) Using Euler's Formula.

Problem 2 Prove that every n-vertex plane graph isomorphic to its dual has $2 n-2$ edges.
For all $n \geq 4$, construct a simple n-vertex plane graph isomorphic to its dual.
Problem 3 Given a plane graph G, draw the dual graph G^{*} so that each dual edge intersects its corresponding edge in G and no other edge. Prove the following.
(a) G^{*} is connected
(b) If G is connected, then each face of G^{*} contains exactly one vertex of G.
(c) $\left(G^{*}\right)^{*}=G$ if and only if G is connected.

Problem 4 Prove that every simple planar graph with at least four vertices has at least four vertices with degree less than 6 .
For each even value of n with $n \geq 8$, construct an n-vertex simple planar graph G that has exactly four vertices with degree less than 6 .

Problem 5 Prove that every 3 -connected graph on at least six vertices that contains a subdivision of K_{5}, also contains a subdivision of $K_{3,3}$.

