Exercise Sheet 1

Tibor Szabó Discrete Mathematics II, Winter 2011/12 Due date: October 25th (Tuesday) by 10:00, at the end of the lecture.

Problem 1 Give two proofs that the Petersen graph is nonplanar.

- (a) Using Kuratowski's Theorem.
- (b) Using Euler's Formula.

Problem 2 Prove that every *n*-vertex plane graph isomorphic to its dual has 2n - 2 edges.

For all $n \ge 4$, construct a simple *n*-vertex plane graph isomorphic to its dual.

Problem 3 Given a plane graph G, draw the dual graph G^* so that each dual edge intersects its corresponding edge in G and no other edge. Prove the following.

- (a) G^* is connected
- (b) If G is connected, then each face of G^* contains exactly one vertex of G.
- (c) $(G^*)^* = G$ if and only if G is connected.

Problem 4 Prove that every simple planar graph with at least four vertices has at least four vertices with degree less than 6.

For each even value of n with $n \ge 8$, construct an n-vertex simple planar graph G that has exactly four vertices with degree less than 6.

Problem 5 Prove that every 3-connected graph on at least six vertices that contains a subdivision of K_5 , also contains a subdivision of $K_{3,3}$.