Exercise Sheet 10

Tibor Szabó Discrete Mathematics II, Winter 2011/12 Due date: January 17th (Tuesday) by 12:30, at the beginning of the exercise session.

Problem 1 Prove that R(3,4) = 9 and R(3,5) = 14. (*Hint:* To construct a coloring for the later case, you could try to label the vertices with the elements of \mathbb{F}_{13} .)

Problem 2 Prove that the Paley-coloring on 17 vertices does not contain a m.c. K_4 .

(In the Paley coloring the vertices are labeled with the elements of the *p*-element field \mathbb{F}_p . An edge xy is colored with red if $x - y \in Q_p$, otherwise the edge is colored blue. Here $Q_p = \{z^2 : z \in \mathbb{F}_p\}$ is the set of *quadratic residues* modulo p.) (*Hint:* You should try to prove and use the many symmetries of the Paley coloring.)

Problem 3. Let $R_r(3)$ be the generalization of the Ramsey number R(3,3) to r colors.

- (a) Come up with the definition of $R_r(3)$
- (b) Prove that $R_r(3)$ is finite
- (c) Show that $R_r(3) \leq |e \cdot r!| + 1$

Problem 4. Prove that if the first $\lfloor k!e \rfloor$ integers are colored with k colors, then there are three (not necessarily distinct) integers x, y, z having the same colors which satisfy x + y = z.

Remark. This is a van der Waerden type theorem for a monochromatic solution of a linear equation, only the equation is different. In van der Waerden's Theorem we consider x + y = 2z, while here we consider x + y = z. The difference seems small, still this problem is more of an exercise than van der Waerden's Theorem.

Problem 5. Prove that for every k there exists an integer n(k) such that if you color the *subsets* of an n(k) element set V with k colors, then there are two disjoint non-empty subsets X, Y such that X, Y, and $X \cup Y$ all have the same color.