
Exercise Sheet 11

Tibor Szabó
Discrete Mathematics II, Winter 2011/12

Due date: January 24th (Tuesday) by 12:30, at the beginning of the exercise
session.

Problem 1. Show that for any integer k ≥ 1 there exists an integer N =
N(k), such that in any N×N 0/1-matrix there exists a principal k×k submatrix
in which all elements above the diagonal are the same and all elements below the
diagonal are the same.

Problem 2. Let G be a graph define as follows:

V (G) =

(
[k]

3

)
E(G) = {AB : |A ∩B| = 1}

Prove that both α(G) and ω(G) is at most k.
(Give an independent combinatorial proof (don’t apply any general theorems

you will learn the coming week.))

Remark. This construction of Zs. Nagy (1973) gives an explicit constructive
lower bound of cubic order for the symmetric Ramsey number R(k + 1, k + 1).
This was the first successful attempt to exceed the quadratic lower bound (of k2)
provided by the Turán graph. We will discuss much more of explicit combinatorial
constructions next semester in the Discrete Mathematics III course. Recall that
the exponential lower bound of Erdős which was mentioned at the lecture is not
constructive. We will prove it using the probabilistic method.

Problem 3. Prove Dilworth’s Theorem using König’s min-max Theorem
about the maximum size matching in bipartite graph.

Problem 4. Let SF (`, k) be the smallest integer N , such that every family
of N sets of size ` contains a sunflower with k petals.

(a) Show that SF (2, 3) = 7.

(b) Show that for every even `, we have SF (`, 3) >
√

6
`

Problem 5.
(a) Show that any two-coloring of the integers contains a monochromatic

solution of the equation x+2y = z. (Hint: Try to make use of van der Waerden’s
Theorem in your proof)
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(b) Construct a coloring of the positive integers so there is no monochromatic
solution to the equation x + y = 3z. (Hint: 4-color according to the mod 5
remainder after the largest power of 5 is factored out.)

(c) Let a1, . . . , an ∈ Z be constants. Show that there is a coloring of the
positive integers with finitely many colors such a way that a1x1 + · · ·+ anxn = 0
does not have monochromatic solution (x1, . . . , xn) if and only if there is a subset
of the coefficients which sum up to 0. (That is, there exists I ⊆ [n], such that∑

i∈I ai = 0.)

Remark Van der Waerden’s Theorem and Problem 4 on the previous sheet
are both special cases of (c); though the VdW Thm is used in the proof above,
while Problem 4 on Sheet 10 could be proved in a much simpler way.
Parts (a) and (b) are instructive special cases which should lead you to the general
solution.)

Problem 6. Let F = {F1, . . . , Fm} be a family of subsets of [n], such that
for every i 6= j, Fi 6⊆ Fj, Fi ∩ Fj 6= ∅, Fi ∪ Fj 6= [n]. Prove that

m ≤
(
n− 1

bn−1
2
c

)
.

(Hint: You might want to use Hall’s Theorem to reduce to the case when F is
uniform.)
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