Exercise Sheet 14

Tibor Szabó
Discrete Mathematics II, Winter 2011/12
Due date: February 15th (Wednesday) by 8:30, at the beginning of the exercise session.

Problem 1. Let G be a plane graph where every face is a triangle. Prove that for any 3 -coloring of the vertices of G there are an even number of faces whose vertices are colored with three different colors.

Problem 2. For some positive integer k, a Boolean function $f:\{0,1\}^{n} \rightarrow$ $\{0,1\}$ is called a $k-C N F$ formula if f is the $A N D$ of an arbitrary (finite) number of clauses, each clause is the $O R$ of exactly k literals of k distinct variables (where each literal is either a variable or its negation). We say that the formula is satisfiable if f is not constant 0 .
(For example, $\left(x_{1} \vee x_{3} \vee \bar{x}_{4}\right) \wedge\left(\bar{x}_{2} \vee x_{3} \vee \bar{x}_{5}\right) \wedge\left(\bar{x}_{1} \vee x_{4} \vee x_{5}\right)$ is a 3-CNF formula of the variables $x_{1}, x_{2}, x_{3}, x_{4}$, and x_{5}. For example f evaluates to 0 (that is, "false") with the substitution $(0,0,0,1,1)$ and to 1 (that is, "true") with the substituition $(1,0,1,1,0)$. Hence f is satisfiable, because it has at least one substituition which evaluates to 1.)

A k-CNF formula in which each variable appears in at most s clauses is called a (k, s)-CNF formula. (The example above is a (3,2)-CNF formula because no variable appears in three clauses. Let $f(k)$ be the largest integer s such that every (k, s)-CNF formula is satisfiable.
(i) Show that $2^{k}>f(k)$ for every $k \geq 1$.
(ii) Show that $f(k) \geq k$ for every $k \geq 1$.
(iii) Show that $f(k) \geq\left\lfloor\frac{2^{k}}{k e}\right\rfloor-1$ for all $k \geq 1$.

