Exercise Sheet 2

Tibor Szabó Discrete Mathematics II, Winter 2011/12 Due date: November 1st (Tuesday) by 10:00, at the end of the lecture.

Problem 1 Use Kuratowski's Theorem to show that a graph is outerplanar if and only if it does not contain a subdivision of K_4 or $K_{2,3}$.

Problem 2 Prove, without using the Four Color Theorem, that every outerplanar graph is 3-colorable.

Problem 3 Apply Problem 2 to prove the Art Gallery Theorem: If an art gallery is laid out as a simple polygon with n sides, then it is possible to place $\lfloor n/3 \rfloor$ guards such that every point of the interior is visible by some guard. Construct a polygon that does require $\lfloor n/3 \rfloor$ guards.

An art gallery and what a guard sees from a corner

Problem 4 Prove Wagner's Theorem: A graph is planar if and only if it does not contain K_5 or $K_{3,3}$ as a minor.

Problem 5

(a) Give a drawing of K_6 in the real projective plane without any crossing. (Think of the projective plane as a closed disc where opposite points of the boundary circle are identified.) (b) Give a drawing of K_7 on the torus without any crossing. (Think of the torus as the unit square $[0, 1]^2$, where each boundary point (0, y) is identified with (1, y) and point (x, 0) is identified with (x, 1).)

Problem 6 (*) Prove that a maximal planar graph is 3-colorable if and only if it is Eulerian. (Hint: For sufficiency, use induction on n(G). Choose an appropriate pair or triple of adjacent vertices to replace with appropriate edges.)