Exercise Sheet 3

Tibor Szabó
Discrete Mathematics II, Winter 2011/12
Due date: November 8th (Tuesday) by 12:30, at the beginning of the exercise session.

Problem 1 Determine the crossing numbers of $K_{2,2,2}, K_{1,2,2,2}$ and $K_{2,2,2,2}$.
Problem 2. It is conjectured that $\nu\left(K_{m, n}\right)=\left\lfloor\frac{m}{2}\right\rfloor \cdot\left\lfloor\frac{m-1}{2}\right\rfloor \cdot\left\lfloor\frac{n}{2}\right\rfloor \cdot\left\lfloor\frac{n-1}{2}\right\rfloor$. Suppose that this conjecture holds for $K_{m, n}$ and m is odd. Prove that the conjecture then holds also for $K_{m+1, n}$.

Problem 3. Prove that $\nu\left(K_{n}\right) \geq \frac{1}{80} n^{4}+O\left(n^{3}\right)$, using the fact that the conjecture in Problem 2 about the crossing number of $K_{6, n-6}$ is known to be true.

Problem 4 Prove that a 3-regular simple graph has a perfect matching if and only if its edge-set can be decomposed into P_{4} s.

Problem 5 Exhibit a maximum matching in the graph below and give a short proof that it has no larger matching.

