Exercise Sheet 6

Tibor Szabó
Discrete Mathematics II, Winter 2011/12

Due date: November 29th (Tuesday) by 12:30, at the beginning of the exercise session.

Problem 1. Formulate and prove a mathematically precise statement expressing the following: The stable matching produced by the Proposal Algorithm with the men doing the proposing is the best possible stable matching for the men.

Problem 2. A total coloring of G assigns a color to each vertex and to each edge such that the colored objects have different colors when they are adjacent or incident. Prove that G has a total coloring with at most $\chi_{l}^{\prime}(G)+2$ colors.
Remark. The Total Coloring Conjecture states that every simple graph G has a total coloring with at most $\Delta(G)+2$ colors. By the above exercise, the List Coloring Conjecture would imply a total coloring with $\Delta(G)+3$ colors.)

Problem 3. Prove that every connected graph with an even number of edges can be decomposed into $P_{3} \mathrm{~s}$. (Hint: One option is to use Tutte's Theorem.)

Problem 4. Let G be a graph and $M=\{v \in V(G): d(v)=\Delta(G)\}$ be the set of vertices with maximum degree. Show that if the induced subgraph $G[M]$ is a forest, then $\chi^{\prime}(G)=\Delta(G)$.

Problem 5. The Cartesian product $G \square H$ of two graphs G and H can informally be thought of as taking $n(H)$ vertex-disjoint copies of the graph G and introducing a perfect matching between each two copies of G which correspond to two adjacent vertices of H (and these perfect matchings connect the identical vertices in the two copies of G). (For example the d-dimensional hypercube graph Q_{d} is the Cartesian product of two smaller cubes whose dimension sums up to d : $Q_{d} \simeq Q_{k} \square Q_{d-k}$ for any $1 \leq k \leq d-1$.)
Formally, let $V(G \square H)=V(G) \times V(H)$ and $E(G \square H)=\left\{\left\{\left(g_{1}, h_{1}\right),\left(g_{2}, h_{2}\right)\right\}\right.$: $\left(\left\{g_{1}, g_{2}\right\} \in E(G)\right.$ and $\left.h_{1}=h_{2}\right)$ or $\left(g_{1}=g_{2}\right.$ and $\left.\left.\left\{h_{1}, h_{2}\right\} \in E(H)\right)\right\}$

Prove that if G and H are simple graphs with at least one edge, then $\chi^{\prime}(H)=$ $\Delta(H)$ implies $\chi^{\prime}(G \square H)=\Delta(G \square H)$.

