Exercise Sheet 8

Tibor Szabó Discrete Mathematics II, Winter 2011/12 Due date: January 3rd (Tuesday) by 12:30, at the beginning of the exercise session.

Problem 1. Prove that a k-chromatic triangle-free graph must have at least $\binom{k+1}{2} - 1$ vertices.

Remark: Mycielski's construction gives an example with exponentially many $(\sim 2^k)$ vertices.

Problem 2. Let G be the graph on vertex set [4] with edges 12, 13, 14, 23. Determine ex(n, G) for every n.

Problem 3.

- (a) Let G = (V, E) be a graph with average vertex degree \bar{d} . Show that there exists a subgraph H in G with $\delta(H) \geq \bar{d}/2$.
- (b) Let T be a tree on k vertices. Prove that $\frac{n(k-2)}{2} \leq ex(n,T) < nk$, for any $n \in \mathbb{N}$ divisible by k 1.

Remark: The lower bound is conjectured to be tight.

Problem 4. Consider the finite field \mathbb{F}_p for some prime number p and define a graph $G_p = (V_p, E_p)$ on the vertex set $V_p = \mathbb{F}_p^2 \setminus \{(0, 0)\}$. Two points (x, y) and (x', y') from V_p are connected by an edge in G_p if and only if they are distinct and $xx' + yy' \equiv 1 \pmod{p}$.

- a) Prove that G_p does not contain $K_{2,2}$ as a subgraph.
- b) Show that $|E_p| \ge \frac{1}{2}(p-1)(p^2-1)$.
- c) Conclude that $ex(n, K_{2,2}) = \Omega(n^{3/2})$.

Remark. Together with Erdős' Theorem from the lecture, we have $ex(n, K_{2,2}) = \Theta(n^{3/2})$.

Problem 5. Prove that for any $s, t \in \mathbb{N}$ there is some constant $c = c(s, t) \in \mathbb{R}$ such that $ex(n, K_{s,t}) \leq cn^{2-1/s}$, for any $n \in \mathbb{N}$.

Hint: Doublecount the subgraphs $K_{1,s}$.

Problem 6.

- (i) Prove that the Turán graph $T_{n,r-1}$ is a unique graph which maximizes the sum of the squared degrees (i.e., $\sum_{v \in V(G)} d(v)^2$) among all K_r -free *n*-vertex graphs *G*. (Hint: Mimic the proof of Turán's theorem.)
- (ii) Prove that the statement of part (a) is no longer generally true if we consider maximizing $\sum_{v \in V(G)} d(v)^4$ instead.