Exercise Sheet 9

Tibor Szabó
Discrete Mathematics II, Winter 2011/12
Due date: January 10th (Tuesday) by 12:30, at the beginning of the exercise session.

Problem 1.

(i) Show that for any set P of n points in \mathbb{R}^{2} there are at most $O\left(n^{3 / 2}\right)$ pairs of points in $\binom{P}{2}$ that have Euclidean distance exactly one. (Hint: Show that an appropriately defined unit distance graph does not contain $K_{2,3}$ as a subgraph.)
Remark. It is conjectured that the same is true with $n^{1+o(1)}$ instead of $n^{3 / 2}$. The current best bound is $n^{4 / 3}$.
(ii) Show that for any set P of n points in \mathbb{R}^{3} there are at most $O\left(n^{5 / 3}\right)$ pairs of points in $\binom{P}{2}$ that have Euclidean distance exactly one.

Problem 2. If A, B is ε-regular with $\mathrm{d}(A, B)=\delta$ and $A^{\prime} \subset A, B^{\prime} \subset B$ satisfy $\left|A^{\prime}\right| \geq \gamma|A|$ and $\left|B^{\prime}\right| \geq \gamma|B|$ for some $\gamma \geq \varepsilon$, then A^{\prime}, B^{\prime} is $\varepsilon \max \left\{2, \frac{1}{\gamma}\right\}$-regular with density somewhere in $[\delta-\varepsilon, \delta+\varepsilon]$.

Problem 3. (Triangle Removal Lemma) For some $\gamma>0$, a graph $G=(V, E)$ is said to be γ-far from having some property \mathcal{P} if one needs to change (add or remove) more than $\gamma\binom{|V|}{2}$ edges in G to make it satisfy \mathcal{P}.

Show that for every $\gamma>0$ there is a $\delta=\delta(\gamma)$ such that any graph $G=(V, E)$ which is γ-far from being triangle-free contains at least $\delta\binom{|V|}{3}$ triangles.

Problem 4. Show that for any $\eta \in(0,1)$ and $k \in \mathbb{N}$ there exist $\gamma=\gamma(\eta, k)$ and $\delta=\delta(\eta, k)$ with the following property.
Consider a graph $H=\left(\left\{v_{1}, \ldots, v_{k}\right\}, E\right)$ and let V_{1}, \ldots, V_{k} be pairwise disjoint vertex sets of some graph G such that V_{i}, V_{j} is γ-regular for any $1 \leq i<j \leq k$. Moreover, suppose $\mathrm{d}\left(V_{i}, V_{j}\right) \geq \eta$, if $\left\{v_{i}, v_{j}\right\} \in E$ and $\mathrm{d}\left(V_{i}, V_{j}\right) \leq 1-\eta$, otherwise. Then at least $\delta \prod_{i=1}^{k}\left|V_{i}\right|$ tuples from $V_{1} \times \ldots \times V_{k}$ span induced copies of H.

