Hypergraph Turán numbers I – 4-clique_

What would be the smallest meaningful clique to generalize Turán's Theorem for in k-uniform hypergraphs with k > 2? It is $K_4^{(3)}$.

Construction Let 3|n. Partition $V_0 \cup V_1 \cup V_2 = [n]$ with $|V_0| = |V_1| = |V_2| = \frac{n}{3}$. Let \mathcal{H} be 3-uniform: $E(\mathcal{H}) = \{T : |T \cap V_i| = 1 \text{ for all } i = 0, 1, 2\} \cup$ $\{T : |T \cap V_i| = 2, |T \cap V_{i+1}| = 1 \text{ for some } i = 0, 1, 2\}$ **Proposition** \mathcal{H} contains no copy of $K_A^{(3)}$.

For an *k*-uniform hypergraph \mathcal{K} , let $ex(n, \mathcal{K})$ be the largest number *m* such that there exists a \mathcal{K} -free *k*-uniform hypergraph on *n* vertices with *m* edges.

Consequence $ex(n, K_4^{(3)}) \ge \frac{5}{9} \binom{n}{3}$

Turán's Conjecture (\$1000 dollar question)

$$ex(n, K_4^{(3)}) = |E(\mathcal{H})|$$

Remark If conjecture is true, then there are exponentially many extremal constructions (Kostochka).

Hypergraph Turán numbers II — Fano plane.

Let \mathcal{F} be the 3-uniform hypergraph defined on $V(\mathcal{F}) =$ [7] with $E(\mathcal{F}) = \{123, 345, 561, 174, 376, 572, 246\}.$

Remark \mathcal{F} is called the "Fano plane" (It is the projective plane over the field \mathbb{F}_2). Its sets have the nice property that any two of them interesct in exactly 1 element.

A coloring of the vertices of a hypergraph ${\cal H}$ is proper if no edge is monochromatic.

Proposition \mathcal{F} is not properly 2-colarable.

Construction Let \mathcal{H} be the 2-colorable hypergraph with the most edges: Partition $V_1 \cup V_2 = [n]$ with $|V_1| = \lfloor \frac{n}{2} \rfloor$ and $|V_2| = \lceil \frac{n}{2} \rceil$. $E(\mathcal{H}) = \{T \in {[n] \choose 3} : T \cap V_i \neq \emptyset \text{ for both } i = 1, 2\}$

Claim \mathcal{H} contains no copy of \mathcal{F} .

Proof. \mathcal{F} is not 2-colorable.

Theorem (De Caen-Füredi, Keevash-Sudakov, Füredi-Simonovits, 2006) $ex(n, \mathcal{F}) = |E(\mathcal{H})|$

Extremal set theory — the classics I____

A family \mathcal{F} of sets is called *k*-uniform if every member is a *k*-elements set.

Family S is a sunflower (or Δ -system) if $A \cap B = \bigcap_{F \in S} F$ for every $A, B \in S$. The set $\bigcap_{F \in S} F$ is called the core of the sunflower and $F \setminus \bigcap_{F \in S} F$ are its petals.

Theorem (Erdős-Rado) \mathcal{F} is an ℓ -uniform family and $|\mathcal{F}| \geq 2^{\ell} \ell!$ then \mathcal{F} contains a sunflower with three petals

Construction $X = \{x_1, \dots, x_\ell, y_1, \dots, y_\ell\}$ Define $\mathcal{F} = \{F \subseteq X : |F \cap \{x_i, y_i\}| = 1 \text{ for every } i\}.$ \mathcal{F} has no sunflower with three petals and $|\mathcal{F}| = 2^l$.

There are better constructions with C^{ℓ} members where C is some constant > 2 (HW). But no superexponential construction is known.

The best known upper bound (Kostochka) is slightly smaller than $\ell!$.

\$1000 dollar question: Is there an ℓ -uniform family containing no sunflower with three petals, which has superexponential size (in ℓ)?

Proof. Induction on ℓ . For $\ell = 1$ we can have at most two one-element subsets.

Let $\ell > 1$.

There exist a set X of at most 2ℓ elements that every $F \in \mathcal{F}$ intersect X (Take two disjoint members of \mathcal{F} if they exist, otherwise take any one member of \mathcal{F} .)

 $\mathcal{F}_x = \{F \setminus \{x\} : F \in \mathcal{F}, x \in F\}$ is an $(\ell - 1)$ -uniform family containing no sunflower with three petals, for every $x \in X$.

By induction $|\mathcal{F}_x| \leq 2^{\ell-1}(\ell-1)!$ for every $x \in X$.

Then

$$|\mathcal{F}| \leq \sum_{x \in X} |\mathcal{F}_x| \leq |X| \cdot (2^{\ell-1}(\ell-1)!) \leq 2^{\ell}\ell!.$$

Posets

 (P, \leq) is a poset if the relation \leq on P is

- reflexive $(a \le a \text{ for all } a \in P)$
- antisymmetric ($a \le b$ and $b \le a \Rightarrow a = b$)
- transitive ($a \le b$ and $b \le c \Rightarrow a \le c$)

a and b are comparable if $a \le b$ or $b \le a$. Otherwise a and b are incomparable.

 $C \subseteq P$ is a chain if any two elements are comparable.

 $A \subseteq P$ is an antichain if no two elements are comparable.

Extremal set theory — the classics II_

The width of a poset is the size of the largest antichain.

 $(2^{[n]}, \subseteq)$ is the Boolean poset.

Sperner's Theorem The width of the Boolean poset is $\binom{n}{\lfloor n/2 \rfloor}$.

Reformulation: How many subsets of [n] can be select if it is forbidden to select two sets such that one is subset of the other?

You can select all $\binom{n}{k}$ subsets of a given size k: they certainly satisfy the property.

 $k = \left| \frac{n}{2} \right|$ maximizes their number.

Sperner's Theorem If $\mathcal{F} \subseteq 2^{[n]}$ is a family of subsets such that for every $A, B \in \mathcal{F}$ we have $A \not\subseteq B$ then

$$|\mathcal{F}| \leq {n \choose \lfloor n/2 \rfloor}.$$

Permutation method

Proof. Count permutations $\pi \in S_n$ of [n] which have an initial segment from \mathcal{F} . Formally, double-count

 $M = |\{(\pi, F) : \pi \in S_n, F \in \mathcal{F}, F = \{\pi(1), \dots, \pi(|F|)\}\}|$

For every $F \in \mathcal{F}$ there are |F|!(n - |F|)! permutations $\pi \in S_n$ with $\{\pi(1), \ldots, \pi(|F|)\} = F$. So

$$M = \sum_{F \in \mathcal{F}} |F|! (n - |F|)!.$$

For every $\pi \in S_n$ there is at most one k such that $\{\pi(1), \ldots, \pi(k)\} \in \mathcal{F}$. So M < n!.

Hence

$$\sum_{F \in \mathcal{F}} |F|! (n - |F|)! \leq n!$$

$$1 \geq \sum_{F \in \mathcal{F}} \frac{1}{\binom{n}{|F|}} \geq \sum_{F \in \mathcal{F}} \frac{1}{\binom{n}{\lfloor \frac{n}{2} \rfloor}} = |\mathcal{F}| \frac{1}{\binom{n}{\lfloor \frac{n}{2} \rfloor}}$$

Min-max statement for max-chains_

A partition $C = \{C_1, \ldots, C_l\}$ of *P* is a chain partition of *P* if all C_i s are chains.

A partition $\mathcal{A} = \{A_1, \dots, A_k\}$ is an antichain partition of *P* if all A_i s are antichains.

Proposition max{|C| : C is a chain} = min{|A| : A is an antichain partition of P}

Proof. \leq is immediate.

 \geq The set $A = \{x \in P : x \not\leq y \text{ for all } y \in P\}$ of maximum elements forms an antichain, that intersects every maximal chain of P.

So if *P* has maximum chain size *M*, then $P \setminus A$ has maximum chain size at most M - 1 (in fact equal).

By induction, find a partition of $P \setminus A$ into M - 1 antichains and extend it by A to get a partition of P into M antichains.

Min-max statement for max-antichains_____

Dilworth's Theorem max{|A| : A is an antichain} = min{|C| : C is a chain partition of P}

Proof. (Tverberg) $| \leq |$ is again immediate.

 \geq If there is a chain, that interesects every maximal antichain of *P*, then we proceed by induction as in the Proposition.

Otherwise let *C* be a maximal chain, that does not intersect the chain $A = \{a_1, \ldots, a_M\}$ of maximum size *M*. Let

$$A^{-} = \{x \in P : x \le a_i \text{ for some } i\}$$
$$A^{+} = \{x \in P : x \le a_i \text{ for some } i\}$$

- $A^- \cap A^+ = A$ because A is antichain
- $A^- \cup A^+ = P$ because A is maximal.

Apply induction on A^- and on A^+ .

For this note that

 $A^- \neq P \iff \max C \in A^+ \setminus A \iff C$ is maximal $A^+ \neq P \iff \min C \in A^- \setminus A \iff C$ is maximal

Obtain

a chain partition C_1^-, \ldots, C_M^- of A^- and a chain partition C_1^+, \ldots, C_M^+ of A^+ , such that $C_i^- \cap A = \{a_i\} = C_i^+ \cap A$ for all *i*.

Then $C_1^- \cup C_1^+, \ldots, C_M^- \cup C_M^+$ is a partition of *P* into *M* chains.

Extremal set theory — the classics III_

Proposition Let $\mathcal{F} \subseteq 2^{[n]}$ such that any two members of \mathcal{F} have a nonempty intersection. Then

$$|\mathcal{F}| \le 2^{n-1}.$$

Construction Proposition is best possible: Take all sets containing the element 1.

What if we restrict the sizes of the sets: all members must be of size k.

Taking all sets of size k that contains 1 gives $\binom{n-1}{k-1}$ sets. Is this again best possible?

Theorem (Erdős-Ko-Rado) Let $k, n \in \mathbb{N}$, $1 \leq k \leq n/2$. If $\mathcal{F} \subseteq {\binom{[n]}{k}}$ such that any two members of \mathcal{F} have a nonempty intersection. Then

$$|\mathcal{F}| \leq {n-1 \choose k-1}.$$

Permutation method — reloaded

Proof. (Katona) C_n : set of cyclic permutations of [n]. $|C_n| = (n-1)!$

Double-count $M = |\{(\phi, F) : \phi \in C_n, F \in \mathcal{F} \text{ is a segment in } \phi\}|$

For $F \in \mathcal{F}$, let $C_F \subseteq C_n$ set of those cyclic permutations that contain F as a segment. $M = \sum_{F \in \mathcal{F}} |C_F|$. $|C_F| = k!(n-k)! \Longrightarrow |\mathcal{F}|k!(n-k)! = M.$

Claim Every cyclic permutation can contain at most k different $F \in \mathcal{F}$ as a segment.

Claim
$$\Longrightarrow M \le |C_n|k = (n-1)!k$$
.
 $|\mathcal{F}|k!(n-k)! \le (n-1)!k$
 $|\mathcal{F}| \le \frac{(n-1)!k}{k!(n-k)!}$