Hypergraph Turán numbers I-4-clique

What would be the smallest meaningful clique to generalize Turán's Theorem for in k-uniform hypergraphs with $k>2$? It is $K_{4}^{(3)}$.

Construction Let $3 \mid n$. Partition $V_{0} \cup V_{1} \cup V_{2}=[n]$ with $\left|V_{0}\right|=\left|V_{1}\right|=\left|V_{2}\right|=\frac{n}{3}$. Let \mathcal{H} be 3-uniform:
$E(\mathcal{H})=\left\{T:\left|T \cap V_{i}\right|=1\right.$ for all $\left.i=0,1,2\right\} \cup$ $\left\{T:\left|T \cap V_{i}\right|=2,\left|T \cap V_{i+1}\right|=1\right.$ for some $\left.i=0,1,2\right\}$
Proposition \mathcal{H} contains no copy of $K_{4}^{(3)}$.
For an k-uniform hypergraph \mathcal{K}, let $e x(n, \mathcal{K})$ be the largest number m such that there exists a \mathcal{K}-free k uniform hypergraph on n vertices with m edges.

Consequence $e x\left(n, K_{4}^{(3)}\right) \geq \frac{5}{9}\binom{n}{3}$
Turán's Conjecture (\$1000 dollar question)

$$
e x\left(n, K_{4}^{(3)}\right)=|E(\mathcal{H})|
$$

Remark If conjecture is true, then there are exponentially many extremal constrcutions (Kostochka).

Hypergraph Turán numbers II - Fano plane

Let \mathcal{F} be the 3-uniform hypergraph defined on $V(\mathcal{F})=$ [7] with $E(\mathcal{F})=\{123,345,561,174,376,572,246\}$.

Remark \mathcal{F} is called the "Fano plane" (It is the projective plane over the field \mathbb{F}_{2}). Its sets have the nice property that any two of them interesct in exactly 1 element.

A coloring of the vertices of a hypergraph \mathcal{H} is proper if no edge is monochromatic.
Proposition \mathcal{F} is not properly 2 -colarable.
Construction Let \mathcal{H} be the 2 -colorable hypergraph with the most edges: Partition $V_{1} \cup V_{2}=[n]$ with $\left|V_{1}\right|=\left\lfloor\frac{n}{2}\right\rfloor$ and $\left|V_{2}\right|=\left\lceil\frac{n}{2}\right\rceil$. $E(\mathcal{H})=\left\{T \in\binom{[n]}{3}: T \cap V_{i} \neq \emptyset\right.$ for both $\left.i=1,2\right\}$

Claim \mathcal{H} contains no copy of \mathcal{F}.
Proof. \mathcal{F} is not 2-colorable.
Theorem (De Caen-Füredi, Keevash-Sudakov, FürediSimonovits, 2006) $\quad e x(n, \mathcal{F})=|E(\mathcal{H})|$

Extremal set theory - the classics I

A family \mathcal{F} of sets is called k-uniform if every member is a k-elements set.

Family \mathcal{S} is a sunflower (or Δ-system) if $A \cap B=$ $\cap_{F \in \mathcal{S}} F$ for every $A, B \in \mathcal{S}$. The set $\cap_{F \in \mathcal{S}} F$ is called the core of the sunflower and $F \backslash \cap_{F \in \mathcal{S}} F$ are its petals.

Theorem (Erdős-Rado) \mathcal{F} is an ℓ-uniform family and $|\mathcal{F}| \geq 2^{\ell} \ell$! then \mathcal{F} contains a sunflower with three petals

Construction $X=\left\{x_{1}, \ldots, x_{\ell}, y_{1}, \ldots, y_{\ell}\right\}$
Define $\mathcal{F}=\left\{F \subseteq X:\left|F \cap\left\{x_{i}, y_{i}\right\}\right|=1\right.$ for every $\left.i\right\}$. \mathcal{F} has no sunflower with three petals and $|\mathcal{F}|=2^{l}$.

There are better constructions with C^{ℓ} members where C is some constant $>2(\mathrm{HW})$. But no superexponential construction is known.

The best known upper bound (Kostochka) is slightly smaller than ℓ !.
$\$ 1000$ dollar question: Is there an ℓ-uniform family containing no sunflower with three petals, which has superexponential size (in ℓ)?

Proof. Induction on ℓ. For $\ell=1$ we can have at most two one-element subsets.

Let $\ell>1$.
There exist a set X of at most 2ℓ elements that every $F \in \mathcal{F}$ intersect X (Take two disjoint members of \mathcal{F} if they exist, otherwise take any one member of \mathcal{F}.)
$\mathcal{F}_{x}=\{F \backslash\{x\}: F \in \mathcal{F}, x \in F\}$ is an ($\ell-1$)-uniform family containing no sunflower with three petals, for every $x \in X$.

By induction $\left|\mathcal{F}_{x}\right| \leq 2^{\ell-1}(\ell-1)$! for every $x \in X$.
Then

$$
|\mathcal{F}| \leq \sum_{x \in X}\left|\mathcal{F}_{x}\right| \leq|X| \cdot\left(2^{\ell-1}(\ell-1)!\right) \leq 2^{\ell} \ell!.
$$

Posets
(P, \leq) is a poset if the relation \leq on P is

- reflexive ($a \leq a$ for all $a \in P$)
- antisymmetric ($a \leq b$ and $b \leq a \Rightarrow a=b$)
- transitive ($a \leq b$ and $b \leq c \Rightarrow a \leq c$)
a and b are comparable if $a \leq b$ or $b \leq a$. Otherwise a and b are incomparable.
$C \subseteq P$ is a chain if any two elements are comparable.
$A \subseteq P$ is an antichain if no two elements are comparable.

Extremal set theory - the classics II

The width of a poset is the size of the largest antichain.
($2^{[n]}, \subseteq$) is the Boolean poset.
Sperner's Theorem The width of the Boolean poset is $\binom{n}{\lfloor n / 2\rfloor}$.

Reformulation: How many subsets of $[n]$ can be select if it is forbidden to select two sets such that one is subset of the other?

You can select all $\binom{n}{k}$ subsets of a given size k : they certainly satisfy the property.
$k=\left\lfloor\frac{n}{2}\right\rfloor$ maximizes their number.
Sperner's Theorem If $\mathcal{F} \subseteq 2^{[n]}$ is a family of subsets such that for every $A, B \in \mathcal{F}$ we have $A \nsubseteq B$ then

$$
|\mathcal{F}| \leq\binom{ n}{\lfloor n / 2\rfloor} .
$$

Permutation method
Proof. Count permutations $\pi \in S_{n}$ of [n] which have an initial segment from \mathcal{F}. Formally, double-count $M=\left|\left\{(\pi, F): \pi \in S_{n}, F \in \mathcal{F}, F=\{\pi(1), \ldots, \pi(|F|)\}\right\}\right|$

For every $F \in \mathcal{F}$ there are $|F|$! $(n-|F|)$! permutations $\pi \in S_{n}$ with $\{\pi(1), \ldots, \pi(|F|)\}=F$. So

$$
M=\sum_{F \in \mathcal{F}}|F|!(n-|F|)!.
$$

For every $\pi \in S_{n}$ there is at most one k such that $\{\pi(1), \ldots, \pi(k)\} \in \mathcal{F}$.
So $M \leq n$!.
Hence

$$
\begin{gathered}
\sum_{F \in \mathcal{F}}|F|!(n-|F|)!\leq n! \\
1 \geq \sum_{F \in \mathcal{F}} \frac{1}{\binom{n}{|F|}} \geq \sum_{F \in \mathcal{F}} \frac{1}{\binom{n}{\left\lfloor\frac{n}{2}\right\rfloor}}=|\mathcal{F}| \frac{1}{\binom{n}{\left\lfloor\frac{n}{2}\right\rfloor}}
\end{gathered}
$$

Min-max statement for max-chains

A partition $\mathcal{C}=\left\{C_{1}, \ldots, C_{l}\right\}$ of P is a chain partition of P if all $C_{i} \mathrm{~s}$ are chains.

A partition $\mathcal{A}=\left\{A_{1}, \ldots A_{k}\right\}$ is an antichain partition of P if all A_{i} s are antichains.

Proposition $\max \{|C|: C$ is a chain $\}=$ $\min \{|\mathcal{A}|: \mathcal{A}$ is an antichain partition of $P\}$

Proof. \leq is immediate.
\geq The set $A=\{x \in P: x \not \leq y$ for all $y \in P\}$ of maximum elements forms an antichain, that intersects every maximal chain of P.
So if P has maximum chain size M, then $P \backslash A$ has maximum chain size at most $M-1$ (in fact equal).
By induction, find a partition of $P \backslash A$ into $M-1$ antichains and extend it by A to get a partition of P into M antichains.

Min-max statement for max-antichains

Dilworth's Theorem $\max \{|A|: A$ is an antichain $\}=$ $\min \{|\mathcal{C}|: \mathcal{C}$ is a chain partition of $P\}$

Proof. (Tverberg) \leq is again immediate.
\geq If there is a chain, that interesects every maximal antichain of P, then we proceed by induction as in the Proposition.
Otherwise let C be a maximal chain, that does not intersect the chain $A=\left\{a_{1}, \ldots, a_{M}\right\}$ of maximum size M. Let

$$
\begin{aligned}
& A^{-}=\left\{x \in P: x \leq a_{i} \text { for some } i\right\} \\
& A^{+}=\left\{x \in P: x \leq a_{i} \text { for some } i\right\}
\end{aligned}
$$

- $A^{-} \cap A^{+}=A$ because A is antichain
- $A^{-} \cup A^{+}=P$ because A is maximal.

Apply induction on A^{-}and on A^{+}.
For this note that
$A^{-} \neq P \Leftarrow \max C \in A^{+} \backslash A \Leftarrow C$ is maximal
$A^{+} \neq P \Leftarrow \min C \in A^{-} \backslash A \Leftarrow C$ is maximal

Obtain
a chain partition $C_{1}^{-}, \ldots, C_{M}^{-}$of A^{-}and a chain partition $C_{1}^{+}, \ldots, C_{M}^{+}$of A^{+}, such that $C_{i}^{-} \cap A=\left\{a_{i}\right\}=C_{i}^{+} \cap A$ for all i.

Then $C_{1}^{-} \cup C_{1}^{+}, \ldots, C_{M}^{-} \cup C_{M}^{+}$is a partition of P into M chains.

Extremal set theory - the classics III

Proposition Let $\mathcal{F} \subseteq 2^{[n]}$ such that any two members of \mathcal{F} have a nonempty intersection. Then

$$
|\mathcal{F}| \leq 2^{n-1}
$$

Construction Proposition is best possible: Take all sets containing the element 1.

What if we restrict the sizes of the sets: all members must be of size k.
Taking all sets of size k that contains 1 gives $\binom{n-1}{k-1}$ sets. Is this again best possible?

Theorem (Erdős-Ko-Rado) Let $k, n \in \mathbb{N}, 1 \leq k \leq$ $n / 2$. If $\mathcal{F} \subseteq\binom{[n]}{k}$ such that any two members of \mathcal{F} have a nonempty intersection. Then

$$
|\mathcal{F}| \leq\binom{ n-1}{k-1} .
$$

Permutation method - reloaded

Proof. (Katona) C_{n} : set of cyclic permutations of $[n]$.

$$
\left|C_{n}\right|=(n-1)!
$$

Double-count
$M=\mid\left\{(\phi, F): \phi \in C_{n}, F \in \mathcal{F}\right.$ is a segment in $\left.\phi\right\} \mid$

For $F \in \mathcal{F}$, let $C_{F} \subseteq C_{n}$ set of those cyclic permutations that contain F as a segment. $M=\sum_{F \in \mathcal{F}}\left|C_{F}\right|$. $\left|C_{F}\right|=k!(n-k)!\Longrightarrow|\mathcal{F}| k!(n-k)!=M$.

Claim Every cyclic permutation can contain at most k different $F \in \mathcal{F}$ as a segment.

Claim $\Longrightarrow M \leq\left|C_{n}\right| k=(n-1)!k$.

$$
\begin{aligned}
|\mathcal{F}| k!(n-k)! & \leq(n-1)!k \\
|\mathcal{F}| & \leq \frac{(n-1)!k}{k!(n-k)!}
\end{aligned}
$$

