
Hypergraph Turán numbers I – 4-clique

What would be the smallest meaningful clique to ge-
neralize Turán’s Theorem for in k-uniform hypergra-
phs with k > 2? It is K(3)

4 .

Construction Let 3|n. Partition V0 ∪ V1 ∪ V2 = [n]
with |V0| = |V1| = |V2| = n

3. Let H be 3-uniform:
E(H) = {T : |T ∩ Vi| = 1 for all i = 0,1,2} ∪
{T : |T∩Vi| = 2, |T∩Vi+1| = 1 for some i = 0,1,2}

Proposition H contains no copy of K(3)
4 .

For an k-uniform hypergraph K, let ex(n,K) be the
largest number m such that there exists a K-free k-
uniform hypergraph on n vertices with m edges.

Consequence ex(n,K(3)
4 ) ≥ 5

9

(
n
3

)
Turán’s Conjecture ($1000 dollar question)

ex(n,K(3)
4 ) = |E(H)|

Remark If conjecture is true, then there are exponen-
tially many extremal constrcutions (Kostochka).
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Hypergraph Turán numbers II — Fano plane

LetF be the 3-uniform hypergraph defined on V (F) =
[7] withE(F) = {123,345,561,174,376,572,246}.

Remark F is called the “Fano plane” (It is the pro-
jective plane over the field F2). Its sets have the nice
property that any two of them interesct in exactly 1
element.

A coloring of the vertices of a hypergraph H is proper
if no edge is monochromatic.
Proposition F is not properly 2-colarable.

Construction Let H be the 2-colorable hypergraph
with the most edges: Partition V1 ∪ V2 = [n] with
|V1| = bn2c and |V2| = dn2e.
E(H) = {T ∈

(
[n]
3

)
: T ∩ Vi 6= ∅ for both i = 1,2}

Claim H contains no copy of F .
Proof. F is not 2-colorable. 2

Theorem (De Caen-Füredi, Keevash-Sudakov, Füredi-
Simonovits, 2006) ex(n,F) = |E(H)|
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Extremal set theory — the classics I

A family F of sets is called k-uniform if every member
is a k-elements set.

Family S is a sunflower (or ∆-system) if A ∩ B =

∩F∈SF for every A,B ∈ S. The set ∩F∈SF is called
the core of the sunflower and F\∩F∈SF are its petals.

Theorem (Erdős-Rado) F is an `-uniform family and
|F| ≥ 2``! then F contains a sunflower with three
petals

Construction X = {x1, . . . , x`, y1, . . . , y`}
DefineF = {F ⊆ X : |F ∩ {xi, yi}| = 1 for every i}.
F has no sunflower with three petals and |F| = 2l.

There are better constructions with C` members whe-
re C is some constant > 2 (HW). But no superexpo-
nential construction is known.
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The best known upper bound (Kostochka) is slightly
smaller than `!.

$1000 dollar question: Is there an `-uniform family
containing no sunflower with three petals, which has
superexponential size (in `)?

Proof. Induction on `. For ` = 1 we can have at most
two one-element subsets.

Let ` > 1.
There exist a set X of at most 2` elements that every
F ∈ F intersect X (Take two disjoint members of F if
they exist, otherwise take any one member of F .)

Fx = {F \{x} : F ∈ F , x ∈ F} is an (`−1)-uniform
family containing no sunflower with three petals, for
every x ∈ X.

By induction |Fx| ≤ 2`−1(`− 1)! for every x ∈ X.

Then

|F| ≤
∑
x∈X
|Fx| ≤ |X| · (2`−1(`− 1)!) ≤ 2``!.



Posets

(P,≤) is a poset if the relation ≤ on P is

• reflexive (a ≤ a for all a ∈ P )

• antisymmetric (a ≤ b and b ≤ a⇒ a = b)

• transitive (a ≤ b and b ≤ c⇒ a ≤ c)

a and b are comparable if a ≤ b or b ≤ a. Otherwise a
and b are incomparable.

C ⊆ P is a chain if any two elements are comparable.

A ⊆ P is an antichain if no two elements are compa-
rable.
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Extremal set theory — the classics II

The width of a poset is the size of the largest anti-
chain.

(2[n],⊆) is the Boolean poset.

Sperner’s Theorem The width of the Boolean poset
is
(

n
bn/2c

)
.

Reformulation: How many subsets of [n] can be se-
lect if it is forbidden to select two sets such that one is
subset of the other?

You can select all
(
n
k

)
subsets of a given size k: they

certainly satisfy the property.
k =

⌊
n
2

⌋
maximizes their number.

Sperner’s Theorem If F ⊆ 2[n] is a family of subsets
such that for every A,B ∈ F we have A 6⊆ B then

|F| ≤
( n

bn/2c

)
.
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Permutation method

Proof. Count permutations π ∈ Sn of [n] which have
an initial segment from F . Formally, double-count

M = |{(π, F ) : π ∈ Sn, F ∈ F , F = {π(1), . . . , π(|F |)}}|

For every F ∈ F there are |F |!(n − |F |)! permutati-
ons π ∈ Sn with {π(1), . . . , π(|F |)} = F . So

M =
∑
F∈F

|F |!(n− |F |)!.

For every π ∈ Sn there is at most one k such that
{π(1), . . . , π(k)} ∈ F .

So M ≤ n!.

Hence ∑
F∈F

|F |!(n− |F |)! ≤ n!

1 ≥
∑
F∈F

1(
n
|F |
) ≥ ∑

F∈F

1(
n
bn2c
) = |F|

1(
n
bn2c
)
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Min-max statement for max-chains

A partition C = {C1, . . . , Cl} of P is a chain partition
of P if all Cis are chains.

A partition A = {A1, . . . Ak} is an antichain partition
of P if all Ais are antichains.

Proposition max{|C| : C is a chain} =

min{|A| : A is an antichain partition of P}

Proof. ≤ is immediate.
≥ The set A = {x ∈ P : x 6≤ y for all y ∈ P}

of maximum elements forms an antichain, that inter-
sects every maximal chain of P .
So if P has maximum chain size M , then P \ A has
maximum chain size at most M − 1 (in fact equal).
By induction, find a partition of P \ A into M − 1 an-
tichains and extend it by A to get a partition of P into
M antichains. 2
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Min-max statement for max-antichains

Dilworth’s Theorem max{|A| : A is an antichain} =

min{|C| : C is a chain partition of P}

Proof. (Tverberg) ≤ is again immediate.
≥ If there is a chain, that interesects every maximal

antichain of P , then we proceed by induction as in the
Proposition.
Otherwise let C be a maximal chain, that does not
intersect the chain A = {a1, . . . , aM} of maximum
size M . Let

A− = {x ∈ P : x ≤ ai for some i}
A+ = {x ∈ P : x ≤ ai for some i}

• A− ∩A+ = A because A is antichain

• A− ∪A+ = P because A is maximal.
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Apply induction on A− and on A+.

For this note that

A− 6= P ⇐ maxC ∈ A+ \A ⇐ C is maximal
A+ 6= P ⇐ minC ∈ A− \A ⇐ C is maximal

Obtain

a chain partition C−1 , . . . , C
−
M of A− and

a chain partition C+
1 , . . . , C

+
M of A+, such that

C−i ∩A = {ai} = C+
i ∩A for all i.

Then C−1 ∪C
+
1 , . . . , C

−
M ∪C

+
M is a partition of P into

M chains. 2



Extremal set theory — the classics III

Proposition LetF ⊆ 2[n] such that any two members
of F have a nonempty intersection. Then

|F| ≤ 2n−1.

Construction Proposition is best possible: Take all
sets containing the element 1.

What if we restrict the sizes of the sets: all members
must be of size k.
Taking all sets of size k that contains 1 gives

(
n−1
k−1

)
sets. Is this again best possible?

Theorem (Erdős-Ko-Rado) Let k, n ∈ IN , 1 ≤ k ≤
n/2. If F ⊆

(
[n]
k

)
such that any two members of F

have a nonempty intersection. Then

|F| ≤
(n− 1

k − 1

)
.
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Permutation method — reloaded

Proof. (Katona) Cn: set of cyclic permutations of [n].

|Cn| = (n− 1)!

Double-count
M = |{(φ, F ) : φ ∈ Cn, F ∈ F is a segment in φ}|

For F ∈ F , let CF ⊆ Cn set of those cyclic permuta-
tions that contain F as a segment. M =

∑
F∈F |CF |.

|CF | = k!(n− k)! =⇒ |F|k!(n− k)! = M .

Claim Every cyclic permutation can contain at most k
different F ∈ F as a segment.

Claim =⇒M ≤ |Cn|k = (n− 1)!k.

|F|k!(n− k)! ≤ (n− 1)!k

|F| ≤
(n− 1)!k

k!(n− k)!
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