Oddtown/Eventown

Eventown: F C [n] is an Eventown-family of sets if
e |[F|=0 (mod 2) forall F e F and

o |[F1NFr| =0 (mod 2) forevery Fy,F> € F

How large can | F| be? As large as 217/

Construction. For even n:

F={FCln]:|Fn{2i—1,2i}|isevenforalli € [5]}

Oddtown: F C [n] is an Oddtown-family of sets if
e |[F|=1 (mod 2) forall FF € F and

o [F1NFr =0 (mod 2) forevery ] #= F> € F

How large can | F| be?



Oddtown Theorem The maximum size of an Oddtown-
family over [n] is n.

Proof Let F = {Fy, ..., Fn} C 2["l be an Oddtown-
family.

Let v; € {0, 1}" be the characteristic vector of F;:
7t coordinate is 1 if j € F;, otherwise 0.

Crucial property: vi! v; = |F; N F}|
Claim vq, ..., vp is linearly independent over F.
Let \qvi+ -+ Amvin =0

Then for every ¢

0 = (A\vi+- 4 dnvm)!v;
AlvlTVi + -+ )\Z'ViTVi + - )\meTVi
Ai

Since vq,...vm are linearly independent vectors in
an n-dimensional space, m < n. O



The Linear Algebra bound

The key to the Oddtown proof is the following simple
observation:

Linear Algebra bound |If vq,..., v are a set of li-
nearly independent vectors belonging to the span of
the vectors uy, ... uy, then m < k.

The Gram matrix M = (m;;) of a set of vectors
V1i,--.,vm is defined by m;; = ViTVj.
Proposition Vectors v{,...,vmm € F" are linearly in-

dependent iff their Gram matrix over F is nonsingular.

Proof of Oddtown Thm. The Gram matrix of the cha-
racteristic vectors of an Oddtown family over F5 is the
identity matrix. Then Apply Linear Algebra bound.O



Explicit Ramsey graphs |

A clique or an independent set of a graph G is called
a homogenous set.

A graph is k-Ramsey if it does not contain a homoge-
nous set of order k. (Remark: instead of RED/BLUE-
coloring we formulate in terms of edge/non-edge.)

In a week we will know that the largest k-Ramsey
graph has at least v/2F vertices. (R(k, k) > +/2%.)
We will prove its existence by the probabilistic method.

BUT: can you give one such beast in my hand?

Sure: go over all the 2(2) graphs on n = v/2F verti-
ces and check whether their cligue number and inde-
pendence number are below k& (Never mind that these
are NP-hard problems).

Eventually you'll find a k-Ramsey graph.



Explicit Ramsey graphs Il

Why are you not happy with this “construction”?
It takes too much time.

What is then a constructive k-Ramsey graph?

lts adjacency matrix should be constructible in time
polynomial in its number of vertices n.

Or even stronger: adjacency of any two vertices should
be decidable in time polynomial in log n (what it takes
to write down the label of the two vertices).

Turan construction: T, 1y2 ;. has no clique and
no independent set of order k.
Has (k — 1)2 vertices.

Anything more than quadratic?



Construction of Nagy

v(c) = (1),
E(G)={AB:|ANnB|=1}

For kK = 3 ~» Petersen graph

Theorem G has no homogenous set of order k + 1.
Proof. An independent set of G is an Oddtown family
= a(G) <k.
For the vertices (4, . .., Cy, of a clique, we have that
e |C;| = 3forall:and
o |C;NC, | = 1foreveryi# j

Hence the Gram matrix of the characteristic vectors is
Im + 21y (Jm is the all 1 matrix, I, is the identity)

M is nonsingular over IR = vy,...,vim € R" are
linearly independent = m < n.

Sow(G) <n.O

G is a k-Ramsey graph on ©(k3) vertices.
HW: Linear Algebra-free proof (like original)



Non-uniform Fischer Inequality

Non-uniform Fischer Inequality Let A € IN. If 7 =
{F1,...,Fn} C 27l is a family of sets with |C; N
C;| = Aforalli # j, then

| < n.

Proof: Case 1 3i such that | F;| = .
Consider {F}; \ F; : j # i} and use induction on n.

Case 2: Vi, we have |F;| > A.

The Gram matrix of F is AJy, + D, where D is the
diagonal matrix with diagonal entry d; = |F;| — X\ > O,
1=1,...,m.

xT(AJ + D)x = X (X7 x2) 4+ X, dix2 > 0 for
every x = 0, so the Gram matrix is positive definite.
= the Gram matrix has full rank (m) over IR.

= the charactersitic vectors are linearly independent
= m < n.



Construction of Frankl-Wilson

V(G)=< ] )Wlthn—p —1
E(G)={AB:|AnB|=-1 (mod p)}
Remark p = 2 ~» Nagy graph

Theorem (Frankl-Wilson) The graph GG above gives a
constructive k-Ramsey with a vertex set size of order

O (i)

Proof: Next semester in DM lII.



Chromatic number of the unit-distance graph
G, is the n-dimensional unit distance graph.

V(Gp) = IR™
E(Gn) ={xy:|x—-y| =1}

$1000 dollar question: What is the chromatic num-
ber of the plane?
We know 4 < x(G»o) < 7. (HW)

Hadwiger-Nelson problem How fast does x (Gx) grow?

Claim x(Gr) < n"/2. (HW)
x(Grn) > n + 1. (simplex with unit sidelength)

Larman-Rogers (1972) x(Gr) < const™ (HW)
x(Gn) = Q(n?)

Remark. Clearly, unit-distance plays no special role
here. G, = G where G? is the “5-distance graph”:
V(Gy) = R"

E(GY) = {xy : |x—y| =6}



The growth of x(Gy) is exponential
Theorem (Frankl-Wilson, 1981) x(Gr) > Q2(1.1").

Proof. Goal: For some distance § > O we find a sub-

graph H,, C G3 with o(H) < VUL

Key: If v4 and vg € IR™ are the characteristic vec-
tors of sets A and B € 2", then distance of v 4 and

vpg is equal to \/|AAB].

If A, B e F C ([g]) are members of a uniform family
F, then the distance of v4 and vy depends on the
intersection size: |[v4 — vg|| = /2(k — |AN BJ).

an independent set in G2 avoids distance § ~»
a uniform family avoiding a certain intersection size.

We give a family F where any subfamily 7' C F,
whose members avoid a certain intersection size, is
small compared to | F|:

Let F := ([ggj]), where p is a prime.
Then pairwise intersection size p — 1 is hard to avoid.
9



Generalized Oddtown

Replacing F5 in the Oddtown proof with [F, in the proof
immediately gives the

modp-town Theorem. Let p be a prime number and
F C 2[nl pe a family such that

e |[F|£0 (mod p) forall FF € F and
e |1 NFy =0 (mod p) forevery F; # F»> € F

Then |F| < n.
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Even More Generalized Oddtown

Theorem (“Nonuniform modular RW-Theorem”, Frankl-
Wilson, 1981; Deza-Frankl-Singhi, 1983)

Let p be a prime, and L be a set of s integers.

Let By, ..., Bm € 2™ be a family such that

e [B;| ¢ L (mod p)
o |B;NB;| € L (mod p) forevery i # j.

Then

.om
m < Z (z)
i=0
Remark RW stands for Ray-Chaudhuri and Wilson.

Remark Oddtown Theorem: p = 2, L = {0}.
The statement only gives m < n 4 1, but the proof
will give m < n (because L. = {0})
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Generalizing linear independence of vectors.

Let F be a field and €2 an arbitrary set.Then the set
F$? = {f : Q — F} of functions is a vector space
over I¥.

Lemma Let Q C F™. If fq,..., fm € F*? and there
exist vi,...,vm € €2 such that

¢ fi(vi) # 0, and
° fz-(vj) = O forall 5 < 1,

then f1,..., fm are linearly independent in F52.

Proof. Suppose A\1f1 + - -+ Amfm = 0O, and let j
be the smallest index with A; 7 0. Substituting v; into
this function equation we have

Arfi(vy) + -+ A1 f-1(vy) + 45 55(v5)
=0, since A\; = 0, i < j #0
+Ajp1fj41(vj) + -+ Amfm(vy) =0,
=0, since fi(;fii) =0,5<1

a contradiction. ]
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Proof of Even More Generalized Oddtown_

For each set B;, let v; € [y be its characteristic vec-

tor. For x = (x1,...,xn) let
fix) = [ (x"vi = D).
leL
Clearly,
O ifi=y
fi(v;) f L
=0 ifi#
So the functions f1,..., fm are linearly independent
in the subspace they generate in Fp[x1, ..., zm]. What

is the dimension?

Each f; is the product of s linear functions in n va-
riables. Expanding the parenthesis: f; is the linear
combination of terms of the form z7! - --- - z3n with
s1+ -+ sp =357

How many terms like that are there?

Much more than we can afford ...
13



Multilinearization

We need another trick to reduce the dimension. We
use that our vectors (witnessing the linear indepen-
dence in the Lemma) have only O or 1 coordinates.

From f; define f; by expanding the product and repla-
cing each power :c,’f by a term «; for every £k > 1 and
1, 1 <1< m.

Since 0F = 0 and 1¥ = 1 for every k£ > 1 we have
that f;(v;) = fi(v ;) forevery i, ;.

The properties of the functions and vectors remains
valid, so the (now) multilinear polynomials f1, ..., fm
of total degree s are also linearly independent.

They live in a space spanned by the basic monomials
H‘7 1 Zi, of degree at most s. Their number is at most

D+ 1)+ +(+(G) o
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Avoiding a certain intersection size

Theorem Let p be a prime number. If 7/ C ([ggj])
such that for all A, B € 7/ we have |[ANB|#p— 1,

then

A2 (P ) <16

Proof. Consequence of Generalized Oddtown with L. =
{0,1,2,...p —2}. O

Lletn =4p— 1,k =2p— 1.

Lets = \/2(2p—1— (p— 1)) = v/2p and define
HC G oy V(H)={vs:Ae ()

Then distance ¢ is hard to avoid in V (H):

(30-1)
a(H) < 1.76" < ~22=1/
1.17

O

Remark Optimizing parameters gives x(Gr) > €2(1.2™).
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Proof of Eventown bound

Let {Fy,..., Fm} be an Eventown family.

Let Vr = (v1,...,vmm) < I35 be the linear space
spanned by the characteristic vectors.

Letuy,...,u; € Vr be a basis of V.

Let U : F% — TF5 be the linear function defined by
U(x)=(x-uy,...,x-ug).

ui, ..., u linearly independent, so dimim(U) = k.

Claim Vr C ker(U)
Proof. Any x € Vr is a linear combination of v;s, so
is any u;. So
X-U; = Zajﬁkvj "V =— O,
7.k
since by the Eventown rules = v, - v; = O for every
1<j,l<m 0

k=dim(Vr) <dimker(U) =n—k

dim(Vr) < (5] = m < |Vg| < 2[n/2), O
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