
Oddtown/Eventown

Eventown: F ⊆ [n] is an Eventown-family of sets if

• |F | ≡ 0 (mod 2) for all F ∈ F and

• |F1 ∩ F2| ≡ 0 (mod 2) for every F1, F2 ∈ F

How large can |F| be? As large as 2bn/2c

Construction. For even n:

F = {F ⊆ [n] : |F ∩ {2i− 1,2i}| is even for all i ∈ [n2]}

Oddtown: F ⊆ [n] is an Oddtown-family of sets if

• |F | ≡ 1 (mod 2) for all F ∈ F and

• |F1 ∩ F2| ≡ 0 (mod 2) for every F1 6= F2 ∈ F

How large can |F| be?
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Oddtown Theorem The maximum size of an Oddtown-
family over [n] is n.

Proof. Let F = {F1, . . . , Fm} ⊆ 2[n] be an Oddtown-
family.

Let vi ∈ {0,1}n be the characteristic vector of Fi:
jth coordinate is 1 if j ∈ Fi, otherwise 0.

Crucial property: viTvj = |Fi ∩ Fj|

Claim v1, . . . ,vn is linearly independent over F2.

Let λ1v1 + · · ·+ λmvm = 0

Then for every i

0 = (λ1v1 + · · ·+ λmvm)Tvi
= λ1v1

Tvi + · · ·+ λivi
Tvi + · · ·λmvm

Tvi
= λi

Since v1, . . .vm are linearly independent vectors in
an n-dimensional space, m ≤ n. 2



The Linear Algebra bound

The key to the Oddtown proof is the following simple
observation:

Linear Algebra bound If v1, . . . ,vm are a set of li-
nearly independent vectors belonging to the span of
the vectors u1, . . .uk, then m ≤ k.

The Gram matrix M = (mij) of a set of vectors
v1, . . . ,vm is defined by mij = vi

Tvj.

Proposition Vectors v1, . . . ,vm ∈ Fn are linearly in-
dependent iff their Gram matrix over F is nonsingular.

Proof of Oddtown Thm. The Gram matrix of the cha-
racteristic vectors of an Oddtown family over F2 is the
identity matrix. Then Apply Linear Algebra bound.2
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Explicit Ramsey graphs I

A clique or an independent set of a graph G is called
a homogenous set.

A graph is k-Ramsey if it does not contain a homoge-
nous set of order k. (Remark: instead of RED/BLUE-
coloring we formulate in terms of edge/non-edge.)

In a week we will know that the largest k-Ramsey
graph has at least

√
2k vertices. (R(k, k) ≥

√
2k.)

We will prove its existence by the probabilistic method.

BUT: can you give one such beast in my hand?

Sure: go over all the 2(n2) graphs on n =
√

2k verti-
ces and check whether their clique number and inde-
pendence number are below k (Never mind that these
are NP-hard problems).
Eventually you’ll find a k-Ramsey graph.
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Explicit Ramsey graphs II

Why are you not happy with this “construction”?

It takes too much time.

What is then a constructive k-Ramsey graph?

Its adjacency matrix should be constructible in time
polynomial in its number of vertices n.
Or even stronger: adjacency of any two vertices should
be decidable in time polynomial in logn (what it takes
to write down the label of the two vertices).

Turán construction: T(k−1)2,k−1 has no clique and
no independent set of order k.
Has (k − 1)2 vertices.

Anything more than quadratic?
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Construction of Nagy

V (G) =
(

[k]
3

)
,

E(G) = {AB : |A ∩B| = 1}

For k = 3 ; Petersen graph

Theorem G has no homogenous set of order k + 1.
Proof. An independent set of G is an Oddtown family
⇒ α(G) ≤ k.

For the vertices C1, . . . , Cm of a clique, we have that
• |Ci| = 3 for all i and
• |Ci ∩ Cj| = 1 for every i 6= j

Hence the Gram matrix of the characteristic vectors is
Jm + 2Im (Jm is the all 1 matrix, Im is the identity)
M is nonsingular over IR ⇒ v1, . . . ,vm ∈ Rn are
linearly independent⇒m ≤ n.
So ω(G) ≤ n. 2

G is a k-Ramsey graph on Θ(k3) vertices.
HW: Linear Algebra-free proof (like original)
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Non-uniform Fischer Inequality

Non-uniform Fischer Inequality Let λ ∈ IN . If F =

{F1, . . . , Fm} ⊆ 2[n] is a family of sets with |Ci ∩
Cj| = λ for all i 6= j, then

|F| ≤ n.

Proof: Case 1 ∃i such that |Fi| = λ.

Consider {Fj \ Fi : j 6= i} and use induction on n.

Case 2: ∀i, we have |Fi| > λ.

The Gram matrix of F is λJm + D, where D is the
diagonal matrix with diagonal entry di = |Fi|−λ > 0,
i = 1, . . . ,m.

xT (λJ +D)x = λ
(∑m

i=1 x2
i

)
+
∑m
i=1 dix

2
i > 0 for

every x 6= 0, so the Gram matrix is positive definite.

⇒ the Gram matrix has full rank (m) over IR.

⇒ the charactersitic vectors are linearly independent
⇒m ≤ n.
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Construction of Frankl-Wilson

V (G) =
(

[n]
p2−1

)
with n = p3 − 1

E(G) = {AB : |A ∩B| ≡ −1 (mod p)}

Remark p = 2 ; Nagy graph

Theorem (Frankl-Wilson) The graph G above gives a
constructive k-Ramsey with a vertex set size of order

k
O
(

ln k
ln ln k

)
.

Proof: Next semester in DM III.
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Chromatic number of the unit-distance graph

Gn is the n-dimensional unit distance graph.

V (Gn) = IRn

E(Gn) = {xy : ‖x− y‖ = 1}

$1000 dollar question: What is the chromatic num-
ber of the plane?
We know 4 ≤ χ(G2) ≤ 7. (HW)

Hadwiger-Nelson problem How fast does χ(Gn) grow?

Claim χ(Gn) ≤ nn/2. (HW)
χ(Gn) ≥ n+ 1. (simplex with unit sidelength)

Larman-Rogers (1972) χ(Gn) ≤ constn (HW)
χ(Gn) = Ω(n2)

Remark. Clearly, unit-distance plays no special role
here. Gn ∼= Gδn where Gδn is the “δ-distance graph”:

V (Gδn) = IRn

E(Gδn) = {xy : ‖x− y‖ = δ}
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The growth of χ(Gn) is exponential

Theorem (Frankl-Wilson, 1981) χ(Gn) ≥ Ω(1.1n).

Proof. Goal: For some distance δ > 0 we find a sub-
graph Hn ⊆ Gδn with α(H) ≤ |V (H)|

1.1n .

Key: If vA and vB ∈ IRn are the characteristic vec-
tors of sets A and B ∈ 2[n], then distance of vA and
vB is equal to

√
|A4B|.

If A,B ∈ F ⊆
(

[d]
k

)
are members of a uniform family

F , then the distance of vA and vB depends on the
intersection size: ‖vA − vB‖ =

√
2(k − |A ∩B|).

an independent set in Gδn avoids distance δ ;
a uniform family avoiding a certain intersection size.

We give a family F where any subfamily F ′ ⊆ F ,
whose members avoid a certain intersection size, is
small compared to |F|:

Let F :=
(

[4p−1]
2p−1

)
, where p is a prime.

Then pairwise intersection size p− 1 is hard to avoid.
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Generalized Oddtown

Replacing F2 in the Oddtown proof with Fp in the proof
immediately gives the

modp-town Theorem. Let p be a prime number and
F ⊆ 2[n] be a family such that

• |F | 6≡ 0 (mod p) for all F ∈ F and

• |F1 ∩ F2| ≡ 0 (mod p) for every F1 6= F2 ∈ F

Then |F| ≤ n.
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Even More Generalized Oddtown

Theorem (“Nonuniform modular RW-Theorem”, Frankl-
Wilson, 1981; Deza-Frankl-Singhi, 1983)
Let p be a prime, and L be a set of s integers.
Let B1, . . . , Bm ∈ 2[n] be a family such that

• |Bi| 6∈ L (mod p)

• |Bi ∩Bj| ∈ L (mod p) for every i 6= j.

Then

m ≤
s∑

i=0

(n
i

)
.

Remark RW stands for Ray-Chaudhuri and Wilson.

Remark Oddtown Theorem: p = 2, L = {0}.
The statement only gives m ≤ n + 1, but the proof
will give m ≤ n (because L = {0})

11



Generalizing linear independence of vectors

Let F be a field and Ω an arbitrary set.Then the set
FΩ = {f : Ω → F} of functions is a vector space
over F.

Lemma Let Ω ⊆ Fn. If f1, . . . , fm ∈ FΩ and there
exist v1, . . . ,vm ∈ Ω such that

• fi(vi) 6= 0, and

• fi(vj) = 0 for all j < i,

then f1, . . . , fm are linearly independent in FΩ.

Proof. Suppose λ1f1 + · · ·+ λmfm = 0, and let j
be the smallest index with λj 6= 0. Substituting vj into
this function equation we have

λ1f1(vj) + · · ·+ λj−1fj−1(vj)︸ ︷︷ ︸
=0, since λi = 0, i < j

+λjfj(vj)︸ ︷︷ ︸
6=0

+λj+1fj+1(vj) + · · ·+ λmfm(vj)︸ ︷︷ ︸
=0, since fi(vj) = 0, j < i

= 0,

a contradiction. 2
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Proof of Even More Generalized Oddtown

For each set Bi, let vi ∈ Fp be its characteristic vec-
tor. For x = (x1, . . . , xn) let

fi(x) =
∏
l∈L

(xTvi − l).

Clearly,

fi(vj)

 6= 0 if i = j

= 0 if i 6= j

So the functions f1, . . . , fm are linearly independent
in the subspace they generate in Fp[x1, . . . , xm]. What
is the dimension?

Each fi is the product of s linear functions in n va-
riables. Expanding the parenthesis: fi is the linear
combination of terms of the form x

s1
1 · · · · · x

sn
n with

s1 + · · ·+ sn = s?
How many terms like that are there?

Much more than we can afford ...
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Multilinearization

We need another trick to reduce the dimension. We
use that our vectors (witnessing the linear indepen-
dence in the Lemma) have only 0 or 1 coordinates.

From fi define f̃i by expanding the product and repla-
cing each power xki by a term xi for every k ≥ 1 and
i, 1 ≤ i ≤ m.

Since 0k = 0 and 1k = 1 for every k ≥ 1 we have
that fi(vj) = f̃i(vj) for every i, j.

The properties of the functions and vectors remains
valid, so the (now) multilinear polynomials f̃1, . . . , f̃m
of total degree s are also linearly independent.

They live in a space spanned by the basic monomials∏k
j=1 xij of degree at most s. Their number is at most(n

s

)
+
( n

s− 1

)
+ · · ·+

(n
1

)
+
(n
0

)
. 2
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Avoiding a certain intersection size

Theorem Let p be a prime number. If F ′ ⊆
(

[4p−1]
2p−1

)
such that for all A,B ∈ F ′ we have |A ∩B| 6= p− 1,
then

|F| ≤ 2 ·
(4p− 1

p− 1

)
< 1.76n.

Proof. Consequence of Generalized Oddtown withL =

{0,1,2, . . . p− 2}. 2

Let n = 4p− 1, k = 2p− 1.
Let δ =

√
2(2p− 1− (p− 1)) =

√
2p and define

H ⊆ Gδd by V (H) = {vA : A ∈
(

[n]
k

)
}.

Then distance δ is hard to avoid in V (H):

α(H) ≤ 1.76n <

(
4p−1
2p−1

)
1.1n

.

2

Remark Optimizing parameters gives χ(Gn) ≥ Ω(1.2n).
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Proof of Eventown bound

Let {F1, . . . , Fm} be an Eventown family.
Let VF = 〈v1, . . . ,vm〉 ≤ Fn2 be the linear space
spanned by the characteristic vectors.
Let u1, . . . ,uk ∈ VF be a basis of VF .

Let U : Fn2 → Fk2 be the linear function defined by
U(x) = (x · u1, . . . ,x · uk).

u1, . . . ,uk linearly independent, so dim im(U) = k.

Claim VF ⊆ ker(U)

Proof. Any x ∈ VF is a linear combination of vis, so
is any ui. So

x · ui =
∑
j,k

αjβkvj · vk = 0,

since by the Eventown rules⇒ vj · vl = 0 for every
1 ≤ j, l ≤ m 2

k = dim(VF) ≤ dim ker(U) = n− k

dim(VF) ≤ bn2c ⇒ m ≤ |VF | ≤ 2bn/2c. 2
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