How to find a $T_{r t, r}$ These notes augment the transparencies for the second proof of the Erdős-Stone Theorem (via the Regularity Lemma). The notation is the one used there.

Our main tool in finding a $T_{r t, t}$ in $G\left[V_{1} \cup \cdots \cup V_{r}\right]$ is the Degree Lemma.
Degree Lemma Let (A, B) be an ε-regular pair with $d(A, B) \geq d$
Let $Y \subseteq B$ be a subset with $|Y| \geq \varepsilon|B|$.
Then for the number of vertices of A with small degree into Y we have

$$
\left|\left\{v \in A: d_{Y}(v)<(d-\varepsilon)|Y|\right\}\right|<\varepsilon|A| .
$$

Proof. Otherwise the subsets $Y \subseteq B$ and $\left\{v \in A: d_{Y}(v)<(d-\varepsilon)|Y|\right\} \subseteq$ A would contradict the ε-regularity of (A, B).

We start by finding t vertices in V_{1}, which have a "large" common neigborhood in each of the other sets V_{2}, \ldots, V_{r}. (Here and later "large" always will mean size that is a positive fraction of the size \tilde{n} of the V_{i}. This positive fraction will be extremely small compared to the parameter γ of the theorem, it will be a tiny-tiny positive number depending on γ, but not depending on n.)

We find these t vertices $v_{1,1}, v_{1,2}, \ldots, v_{1, t} \in V_{1}$ one by one. For the first vertex $v_{1,1}$ we just want to make sure that it has a relatively large neighborhood in each of the sets V_{2}, \ldots, V_{r}. How large neighborhoods can we hope for? Well, the density of edges in the whole graph is at least d (remember: after using the Regularity Lemma we kept only those edges of G that went between ϵ-regular pairs of density at least d), that's more or less an upper limit to our hopes. We will show that we can get very close to this: as a consequence of ϵ-regularity we will be able to find a first vertex $v_{1,1} \in V_{1}$ which has at least $(d-\epsilon) \tilde{n}$ neighbors in each of the sets V_{2}, \ldots, V_{r}. This is possible, because according to the Degree Lemma there are at most $\epsilon\left|V_{1}\right|=\epsilon \tilde{n}$ vertices in V_{1} with small degree into $V_{2}, \epsilon \tilde{n}$ vertices with small degree into V_{3}, etc, \ldots... So, all together there are at least $\tilde{n}-(r-1) \epsilon \tilde{n}$ vertices in V_{1} that have degree at least $(d-\epsilon) \tilde{n}$ in each of V_{2}, \ldots, V_{r}. Hence if ϵ is chosen to be strictly less than $\frac{1}{r-1}$, then there is such a vertex in V_{1}; we choose an arbitrary one to be $v_{1,1}$. So we will make sure at the end that $\epsilon<\frac{1}{r-1}$.

We need now a $v_{1,2} \in V_{1}$ which has a large common neighborhood with (our already chosen) $v_{1,1}$ into each of the sets V_{2}, \ldots, V_{r}. To find such a vertex we use the Degree Lemma for $A=V_{1}$ and $Y=\Gamma_{V_{2}}\left(\left\{v_{1,1}\right\}\right)$, then for $A=V_{1}$ and $Y=\Gamma_{V_{3}}\left(\left\{v_{1,1}\right\}\right)$, and so on, \ldots, for $A=V_{1}$ and $Y=\Gamma_{V_{r}}\left(\left\{v_{1,1}\right\}\right)$. To apply the Lemma we need that $\left|\Gamma_{V_{i}}\left(\left\{v_{1,1}\right\}\right)\right|>\epsilon \tilde{n}$. This can be assured by choosing an appropriately small ϵ : we know already, because of the selection of $v_{1,1}$, that $\left|\Gamma_{V_{i}}\left(\left\{v_{1,1}\right\}\right)\right|>(d-\epsilon) \tilde{n}$ for each $i=2, \ldots, r$. So all we need is
that ϵ is chosen such that $d-\epsilon>\epsilon$. Than the Degree Lemma tells us that for every $i=2,3 \ldots, r$, there are at most $\epsilon\left|V_{1}\right|$ vertices in V_{1} whose degree into $\Gamma_{V_{i}}\left(\left\{v_{1,1}\right\}\right)$ is smaller than $(d-\epsilon)\left|\Gamma_{V_{i}}\left(\left\{v_{1,1}\right\}\right)\right| \geq(d-\epsilon)^{2} \tilde{n}$. So there are at least $\tilde{n}-(r-1) \epsilon \tilde{n}$ vertices in V_{1} whose degree into each $\Gamma_{V_{i}}\left(\left\{v_{1,1}\right\}\right)$ is at least $(d-\epsilon)^{2} \tilde{n}$. If $\tilde{n}-(r-1) \epsilon \tilde{n}>1$, then we can select one that is different from $v_{1,1}$. This will be $v_{1,2}$ and we have $\left|\Gamma_{V_{i}}\left(\left\{v_{1,1}, v_{1,2}\right\}\right)\right|>(d-\epsilon)^{2} \tilde{n}$ for each $i=2, \ldots, r$.

We select $v_{1,3}, v_{1,4}, \ldots, v_{1, t}$ similarly; for $v_{1, j}$ we want a vertex whose neighborhood into the common neighborhoods $\Gamma_{V_{i}}\left(\left\{v_{1,1}, \ldots, v_{1, j-1}\right\}\right)$ of the already selected vertices is large for each $i=2, \ldots, r$. Here by "large" we mean $(d-\epsilon)^{j} \tilde{n}$ and we assume by indcution that the common neighborhood of the vertices $v_{1,1}, \ldots, v_{1, j-1}$ into each of the $V_{i}, i=2, \ldots, r$, contains at least $(d-\epsilon)^{j-1} \tilde{n}$ vertices. We use the Degree Lemma for $A=V_{1}$ and $Y=\Gamma_{V_{2}}\left(\left\{v_{1,1}, \ldots, v_{1, j-1}\right\}\right)$, then for $A=V_{1}$ and $Y=\Gamma_{V_{3}}\left(\left\{v_{1,1} \ldots, v_{1, j-1}\right\}\right)$, and so on, \ldots, for $A=V_{1}$ and $Y=\Gamma_{V_{r}}\left(\left\{v_{1,1}, \ldots, v_{1, j-1}\right\}\right)$. To apply the Lemma we need that $\left|\Gamma_{V_{i}}\left(\left\{v_{1,1}, \ldots, v_{1, j-1}\right\}\right)\right|>\epsilon \tilde{n}$. This can be assured by choosing an appropriately small ϵ : we know already by induction, because of the selection of $v_{1,1}, \ldots, v_{1, j-1}$, that $\left|\Gamma_{V_{i}}\left(\left\{v_{1,1}, \ldots, v_{1, j-1}\right\}\right)\right|>(d-\epsilon)^{j-1} \tilde{n}$ for each $i=2, \ldots, r$. So all we need is that ϵ is chosen such that $(d-\epsilon)^{j-1}>\epsilon$. Than the Degree Lemma tells us that for every $i=2,3, \ldots, r$, there are at most $\epsilon\left|V_{1}\right|$ vertices whose degree into $\Gamma_{V_{i}}\left(\left\{v_{1,1}, \ldots, v_{1, j-1}\right\}\right)$ is smaller than $(d-\epsilon)\left|\Gamma_{V_{i}}\left(\left\{v_{1,1}, \ldots, v_{1, j-1}\right\}\right)\right| \geq(d-\epsilon)^{j} \tilde{n}$. So there are at least $\tilde{n}-(r-1) \epsilon \tilde{n}$ vertices in V_{1} whose degree into each $\Gamma_{V_{i}}\left(\left\{v_{1,1}, \ldots, v_{1, j-1}\right\}\right)$ is at least $(d-\epsilon)^{j} \tilde{n}$. If $\tilde{n}-(r-1) \epsilon \tilde{n}>j-1$, then we can select one that is different from each of $v_{1,1}, \ldots, v_{1, j-1}$; this will be the vertex $v_{1, j}$.

In conclusion, we successfully end this process of selecting a t-element set $S_{1}=\left\{v_{1,1}, \ldots, v_{1, t}\right\} \subseteq V_{1}$ with a common neighborhood $\Gamma_{V_{i}}\left(S_{1}\right)$ of size at least $(d-\epsilon)^{t} \tilde{n}$ for each $i=2, \ldots, r$, provided the following two conditions hold for ϵ :
(1) $(d-\epsilon)^{t-1} \tilde{n}>\epsilon \tilde{n}$
(this implies $(d-\epsilon)^{j-1} \tilde{n}>\epsilon \tilde{n}$ for each $j=1, \ldots, t$ and hence guarantees that the Degree Lemma can be applied in each step).
(2) $\tilde{n}-(r-1) \epsilon \tilde{n}>t-1$
(this implies that $\tilde{n}-(r-1) \epsilon \tilde{n}>j-1$ for each $j=1, \ldots, t$, and hence makes sure that there is at least one vertex $v_{1, j} \in V_{1}$ which is different from the previously selected $v_{1,1}, \ldots, v_{1, j-1}$ and is not part of the at most $\epsilon \tilde{n}$ vertices which have small degree into $\Gamma_{V_{i}}\left(v_{1,1}, \ldots, v_{1, j-1}\right)$ for some $r=2, \ldots r$.)

We conclude that provided the above two conditions hold, we can find a
subset $S_{1} \subseteq V_{1}$ of size t such that its common neighborhoods $\Gamma_{V_{i}}\left(S_{1}\right)$ into V_{i} has size at least $(d-\epsilon)^{t} \tilde{n}$ for each $i=2, \ldots r$.

Now we go on analogously and find a t-subset $S_{2} \subseteq \Gamma_{V_{2}}\left(S_{1}\right)$ with large common neighborhoods into $\Gamma_{V_{i}}\left(S_{1}\right)$. This is done completely analogously by replacing in our argument the index set $\{1,2,3, \ldots, r\}$ with $\{2,3, \ldots, r\}$, the V_{i} with $\Gamma_{V_{i}}\left(S_{1}\right)$. The conditions change as follows:

- $(d-\epsilon)^{2 t-1} \tilde{n}>\epsilon \tilde{n}$ and
- $(d-\epsilon)^{t} \tilde{n}-(r-2) \epsilon \tilde{n}>t-1$

The first condition will guarantee that the common neighborhood of the vertices $v_{1,1}, \ldots, v_{1, t}, v_{2,1}, \ldots, v_{2, j-1}$ into V_{i} is large enough so the Degree Lemma can be applied.

The second condition ensures that inside $\Gamma_{V_{2}}\left(S_{1}\right)$ we can select a vertex $v_{2, j}$ which is not one of the previously selected vertices $v_{2,1}, \ldots, v_{2, j-1}$ and not among the $\epsilon \tilde{n}$ vertices which have small degree into $\Gamma_{V_{i}}\left(S_{1} \cup\left\{v_{2,1}, \ldots, v_{2, j-1}\right\}\right)$ for some $i=3, \ldots, r$.

We proceed analogously to find $S_{i} \subseteq \Gamma_{V_{i}}\left(S_{1} \cup \cdots \cup S_{i-1}\right)$ with large common neighborhoods into each $\Gamma_{V_{j}}\left(S_{1} \cup \cdots \cup S_{i-1}\right), j>i$. Quantitatively, we mean that $\left|\Gamma_{V_{i}}\left(S_{1} \cup \cdots \cup S_{i}\right)\right|>(d-\epsilon)^{i t} \tilde{n}$ for every $j=i+1, \ldots, r$. The conditions for this look like as follows:
(1) $(d-\epsilon)^{i t-1} \tilde{n}>\epsilon \tilde{n}$ and
(2) $(d-\epsilon)^{(i-1) t} \tilde{n}-(r-i) \epsilon \tilde{n}>t-1$

In the last step (for $j=r-1$), we found a t-subset $S_{r-1} \subseteq \Gamma_{V_{r-1}}\left(S_{1} \cup\right.$ $\left.\cdots \cup S_{r-2}\right)$ with a large common neighborhood into $\Gamma_{V_{r}}\left(S_{1} \cup \cdots \cup S_{r-2}\right)$, i.e., $\left|\Gamma_{V_{r}}\left(S_{1} \cup \cdots \cup S_{r-1}\right)\right|>(d-\epsilon)^{(r-1) t}$.

Now if

$$
(d-\epsilon)^{(r-1) t}>t-1
$$

then we can find a t-element set $S_{r} \subseteq \Gamma_{V_{r}}\left(S_{1} \cup \cdots \cup S_{r-1}\right)$, which completes the construction of the $T_{r t, r}$ we are after $\left(G\left[S_{1} \cup \cdots \cup S_{r}\right]\right.$ is isomorphic to $\left.T_{r t, r}\right)$.

Let us see now which conditions should ϵ satisfy. The strongest of the conditions of type (1) is for $i=r-1$ and it reads $(d-\epsilon)^{(r-1) t-1} \tilde{n}>\epsilon \tilde{n}$.

To guarantee all conditions of type (2) we will take

$$
(d-\epsilon)^{(r-1) t} \tilde{n}-(r-1) \epsilon \tilde{n}>t-1 .
$$

This is certainly much stronger than the ones we got from conditions of type (1), so at the end that's the only condition about ε we will worry about.

To satisfy the condition, first of all we take an ε, so the left hand side is positive, for example take an ε, so $(d-\epsilon)^{(r-1) t}>r \varepsilon$, which makes the left hand side at least $\varepsilon \tilde{n}$. Then we ensure, by choosing a large enough \tilde{n}, that $\epsilon \tilde{n}>t-1$.

For the density d we choose for example

$$
d=\frac{\gamma}{6}
$$

For the lower bound m on the number of parts the Regularity Lemma creates we choose

$$
m=\frac{6}{\gamma} .
$$

This m is also large enough for using Turán's Theorem earlier when we found our K_{r} in the regularity graph $R(\mathcal{P}, d)$ of G :

$$
e x\left(K_{m}, r\right) \leq\left(1-\frac{1}{r-1}\right)\binom{m}{2}+\frac{m}{2}<\left(1-\frac{1}{r-1}\right)\binom{m}{2}+\frac{\gamma}{2} m^{2}
$$

For ϵ we take for example

$$
\varepsilon=\frac{1}{r}\left(\frac{d}{2}\right)^{t(r-1)} .
$$

Then the condition

$$
d+2 \varepsilon+\frac{1}{m}<\frac{\gamma}{2}
$$

which guarantees that most of the edges of G go in between ϵ-regular pairs of density d, is satisfied, and we also have

$$
(d-\varepsilon)^{(r-1) t}>\left(d-\frac{d}{2}\right)^{(r-1) t}=r \varepsilon
$$

which is need for the above.
Finally we choose

$$
N(r, t, \gamma)=\frac{t-1}{\varepsilon(1-\varepsilon)} M(\varepsilon, m)
$$

so for every $n>N(r, t, \gamma)$ we have that

$$
\varepsilon \tilde{n} \geq \frac{1-\varepsilon}{k} n \geq \frac{1-\varepsilon}{M(\varepsilon, m)} n>\frac{1-\varepsilon}{M(\varepsilon, m)} N(r, t, \gamma)=t-1
$$

The actual order of the proof: The theorem gave us parameters r, t and γ. From this first we defined d, m and ε. For m and ε we used the Regularity Lemma, and that gave us back $M(\varepsilon, m)$. Using this we chose our $N(r, t, \gamma)$. Then the proof started: we are given a graph G, we apply the Regularity Lemma, we define the regularity graph, we find in it the K_{r} and finally in the subgraph $G\left[V_{1} \cup \cdots \cup V_{r}\right]$ we find $T_{r t, r}$.

