
How to find a Trt,r These notes augment the transparencies for the second
proof of the Erdős-Stone Theorem (via the Regularity Lemma). The notation
is the one used there.

Our main tool in finding a Trt,t in G[V1 ∪ · · · ∪ Vr] is the Degree Lemma.
Degree Lemma Let (A,B) be an ε-regular pair with d(A,B) ≥ d

Let Y ⊆ B be a subset with |Y | ≥ ε|B|.
Then for the number of vertices of A with small degree into Y we have

|{v ∈ A : dY (v) < (d− ε)|Y |}| < ε|A|.

Proof. Otherwise the subsets Y ⊆ B and {v ∈ A : dY (v) < (d− ε)|Y |} ⊆
A would contradict the ε-regularity of (A,B). �

We start by finding t vertices in V1, which have a ”large” common neig-
borhood in each of the other sets V2, . . . , Vr. (Here and later ”large” always
will mean size that is a positive fraction of the size ñ of the Vi. This positive
fraction will be extremely small compared to the parameter γ of the theorem,
it will be a tiny-tiny positive number depending on γ, but not depending on
n.)

We find these t vertices v1,1, v1,2, . . . , v1,t ∈ V1 one by one. For the first
vertex v1,1 we just want to make sure that it has a relatively large neighbor-
hood in each of the sets V2, . . . , Vr. How large neighborhoods can we hope
for? Well, the density of edges in the whole graph is at least d (remember:
after using the Regularity Lemma we kept only those edges of G that went
between ε-regular pairs of density at least d), that’s more or less an upper
limit to our hopes. We will show that we can get very close to this: as a con-
sequence of ε-regularity we will be able to find a first vertex v1,1 ∈ V1 which
has at least (d− ε)ñ neighbors in each of the sets V2, . . . , Vr. This is possible,
because according to the Degree Lemma there are at most ε|V1| = εñ vertices
in V1 with small degree into V2, εñ vertices with small degree into V3, etc,
. . . . So, all together there are at least ñ − (r − 1)εñ vertices in V1 that
have degree at least (d − ε)ñ in each of V2, . . . , Vr. Hence if ε is chosen to
be strictly less than 1

r−1
, then there is such a vertex in V1; we choose an

arbitrary one to be v1,1. So we will make sure at the end that ε < 1
r−1

.
We need now a v1,2 ∈ V1 which has a large common neighborhood with

(our already chosen) v1,1 into each of the sets V2, . . . , Vr. To find such a
vertex we use the Degree Lemma for A = V1 and Y = ΓV2({v1,1}), then for
A = V1 and Y = ΓV3({v1,1}), and so on, . . . , for A = V1 and Y = ΓVr({v1,1}).
To apply the Lemma we need that |ΓVi

({v1,1})| > εñ. This can be assured by
choosing an appropriately small ε: we know already, because of the selection
of v1,1, that |ΓVi

({v1,1})| > (d − ε)ñ for each i = 2, . . . , r. So all we need is
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that ε is chosen such that d − ε > ε. Than the Degree Lemma tells us that
for every i = 2, 3 . . . , r, there are at most ε|V1| vertices in V1 whose degree
into ΓVi

({v1,1}) is smaller than (d− ε)|ΓVi
({v1,1})| ≥ (d− ε)2ñ. So there are

at least ñ− (r− 1)εñ vertices in V1 whose degree into each ΓVi
({v1,1}) is at

least (d− ε)2ñ. If ñ− (r− 1)εñ > 1, then we can select one that is different
from v1,1. This will be v1,2 and we have |ΓVi

({v1,1, v1,2})| > (d− ε)2ñ for each
i = 2, . . . , r.

We select v1,3, v1,4, . . . , v1,t similarly; for v1,j we want a vertex whose
neighborhood into the common neighborhoods ΓVi

({v1,1, . . . , v1,j−1}) of the
already selected vertices is large for each i = 2, . . . , r. Here by ”large” we
mean (d − ε)jñ and we assume by indcution that the common neighbor-
hood of the vertices v1,1, . . . , v1,j−1 into each of the Vi, i = 2, . . . , r, contains
at least (d − ε)j−1ñ vertices. We use the Degree Lemma for A = V1 and
Y = ΓV2({v1,1, . . . , v1,j−1}), then for A = V1 and Y = ΓV3({v1,1 . . . , v1,j−1}),
and so on, . . . , for A = V1 and Y = ΓVr({v1,1, . . . , v1,j−1}). To apply the
Lemma we need that |ΓVi

({v1,1, . . . , v1,j−1})| > εñ. This can be assured by
choosing an appropriately small ε: we know already by induction, because of
the selection of v1,1, . . . , v1,j−1, that |ΓVi

({v1,1, . . . , v1,j−1})| > (d− ε)j−1ñ for
each i = 2, . . . , r. So all we need is that ε is chosen such that (d− ε)j−1 > ε.
Than the Degree Lemma tells us that for every i = 2, 3, . . . , r, there are
at most ε|V1| vertices whose degree into ΓVi

({v1,1, . . . , v1,j−1}) is smaller
than (d − ε)|ΓVi

({v1,1, . . . , v1,j−1})| ≥ (d − ε)jñ. So there are at least
ñ − (r − 1)εñ vertices in V1 whose degree into each ΓVi

({v1,1, . . . , v1,j−1})
is at least (d− ε)jñ. If ñ− (r− 1)εñ > j − 1, then we can select one that is
different from each of v1,1, . . . , v1,j−1; this will be the vertex v1,j.

In conclusion, we successfully end this process of selecting a t-element set
S1 = {v1,1, . . . , v1,t} ⊆ V1 with a common neighborhood ΓVi

(S1) of size at
least (d − ε)tñ for each i = 2, . . . , r, provided the following two conditions
hold for ε:

(1) (d− ε)t−1ñ > εñ
(this implies (d−ε)j−1ñ > εñ for each j = 1, . . . , t and hence guarantees
that the Degree Lemma can be applied in each step).

(2) ñ− (r − 1)εñ > t− 1
(this implies that ñ− (r− 1)εñ > j− 1 for each j = 1, . . . , t, and hence
makes sure that there is at least one vertex v1,j ∈ V1 which is different
from the previously selected v1,1, . . . , v1,j−1 and is not part of the at
most εñ vertices which have small degree into ΓVi

(v1,1, . . . , v1,j−1) for
some r = 2, . . . r.)

We conclude that provided the above two conditions hold, we can find a

2



subset S1 ⊆ V1 of size t such that its common neighborhoods ΓVi
(S1) into Vi

has size at least (d− ε)tñ for each i = 2, . . . r.
Now we go on analogously and find a t-subset S2 ⊆ ΓV2(S1) with large

common neighborhoods into ΓVi
(S1). This is done completely analogously

by replacing in our argument the index set {1, 2, 3, . . . , r} with {2, 3, . . . , r},
the Vi with ΓVi

(S1). The conditions change as follows:

• (d− ε)2t−1ñ > εñ and

• (d− ε)tñ− (r − 2)εñ > t− 1

The first condition will guarantee that the common neighborhood of the
vertices v1,1, . . . , v1,t, v2,1, . . . , v2,j−1 into Vi is large enough so the Degree
Lemma can be applied.

The second condition ensures that inside ΓV2(S1) we can select a vertex
v2,j which is not one of the previously selected vertices v2,1, . . . , v2,j−1 and not
among the εñ vertices which have small degree into ΓVi

(S1∪{v2,1, . . . , v2,j−1})
for some i = 3, . . . , r.

We proceed analogously to find Si ⊆ ΓVi
(S1 ∪ · · · ∪ Si−1) with large com-

mon neighborhoods into each ΓVj
(S1 ∪ · · · ∪ Si−1), j > i. Quantitatively, we

mean that |ΓVi
(S1 ∪ · · · ∪ Si)| > (d − ε)itñ for every j = i + 1, . . . , r. The

conditions for this look like as follows:

(1) (d− ε)it−1ñ > εñ and

(2) (d− ε)(i−1)tñ− (r − i)εñ > t− 1

In the last step (for j = r − 1), we found a t-subset Sr−1 ⊆ ΓVr−1(S1 ∪
· · · ∪Sr−2) with a large common neighborhood into ΓVr(S1 ∪ · · · ∪Sr−2), i.e.,
|ΓVr(S1 ∪ · · · ∪ Sr−1)| > (d− ε)(r−1)t.

Now if
(d− ε)(r−1)t > t− 1

then we can find a t-element set Sr ⊆ ΓVr(S1 ∪ · · · ∪ Sr−1), which completes
the construction of the Trt,r we are after (G[S1 ∪ · · · ∪ Sr] is isomorphic to
Trt,r).

Let us see now which conditions should ε satisfy. The strongest of the
conditions of type (1) is for i = r − 1 and it reads (d− ε)(r−1)t−1ñ > εñ.

To guarantee all conditions of type (2) we will take

(d− ε)(r−1)tñ− (r − 1)εñ > t− 1.

This is certainly much stronger than the ones we got from conditions of type
(1), so at the end that’s the only condition about ε we will worry about.
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To satisfy the condition, first of all we take an ε, so the left hand side is
positive, for example take an ε, so (d − ε)(r−1)t > rε, which makes the left
hand side at least εñ. Then we ensure, by choosing a large enough ñ, that
εñ > t− 1.

For the density d we choose for example

d =
γ

6
For the lower bound m on the number of parts the Regularity Lemma

creates we choose

m =
6

γ
.

This m is also large enough for using Turán’s Theorem earlier when we found
our Kr in the regularity graph R(P , d) of G:

ex(Km, r) ≤
(

1− 1

r − 1

)(
m

2

)
+
m

2
<

(
1− 1

r − 1

)(
m

2

)
+
γ

2
m2.

For ε we take for example

ε =
1

r

(
d

2

)t(r−1)

.

Then the condition

d+ 2ε+
1

m
<
γ

2
,

which guarantees that most of the edges of G go in between ε-regular pairs
of density d, is satisfied, and we also have

(d− ε)(r−1)t >

(
d− d

2

)(r−1)t

= rε.

which is need for the above.
Finally we choose

N(r, t, γ) =
t− 1

ε(1− ε)
M(ε,m),

so for every n > N(r, t, γ) we have that

εñ ≥ 1− ε
k

n ≥ 1− ε
M(ε,m)

n >
1− ε

M(ε,m)
N(r, t, γ) = t− 1.

The actual order of the proof: The theorem gave us parameters r, t
and γ. From this first we defined d, m and ε. For m and ε we used the
Regularity Lemma, and that gave us back M(ε,m). Using this we chose our
N(r, t, γ). Then the proof started: we are given a graph G, we apply the
Regularity Lemma, we define the regularity graph, we find in it the Kr and
finally in the subgraph G[V1 ∪ · · · ∪ Vr] we find Trt,r.

4


