
Szemerédi’s Regularity Lemma

One of the most important tools in “dense” combina-
torics.

Message: every graph G is the approximate union
of constantly many random-like bipartite graph. The
number of parts depends only on the error of the ap-
proximation constant but not the size of G!

For disjoint subsets X,Y ⊆ V ,

d(X,Y ) :=
|E(X,Y )|
|X| · |Y |

is the density of the pair (X,Y ).

A pair (A,B) of disjoint subsets A,B ⊆ V is called
ε-regular pair for some ε > 0 if allX ⊆ A, and Y ⊆ B
with |X| ≥ ε|A| and |Y | ≥ ε|B| satisfy

|d(X,Y )− d(A,B)| ≤ ε.

Remark Just like in a random bipartite graph...
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Szemerédi’s Regularity Lemma

A partition {V0, V1, . . . , Vk} of V is called an ε-regular
partition if

(i) |V0| ≤ ε|V |

(ii) |V1| = · · · = |Vk|

(iii) all but at most ε
(
k
2

)
of the pairs (Vi, Vj), with 1 ≤

i < j ≤ k2, are ε-regular

V0 is the exceptional set

Regularity Lemma (Szemerédi) ∀ε > 0 and ∀ inte-
ger m ≥ 1 ∃ integer M = M(ε,m) such that every
graph of order at least m admits an ε-regular partition
{V0, V1, . . . , Vk} with m ≤ k ≤M .

Was devised to prove that “dense sets of integers con-
tain an arithmetic progression of arbitrary length”.
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Proof of the Erdős-Stone Thm

Erdős-Stone Theorem. (Reformulation) For any γ >
0 and integers r ≥ 2, t ≥ 1 there exists an integer
N = N(r, t, γ), such that any graphG on n ≥ N ver-
tices with more than

(
1− 1

r−1 + γ
) (

n
2

)
edges con-

tains Trt,r.

Proof strategy:

• Based on an ε-regular partition, build a ”regularity
graph“ R of G. (Regularity Lemma)

• Show that R contains a Kr (Turán’s Theorem)

• Show that Kr ⊆ R ⇒ Trt,r ⊆ G
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Regularity graph

Given ε-regular partition P = {V0, V1, . . . , Vk} of G,
m ≤ k ≤M(ε,m),
define the regularity graph R = R(P, d)

V (R) = {V1, . . . , Vk}

ViVj ∈ E(R) if (Vi, Vj) is ε-regular pair with
density d(Vi, Vj)≥ d

Goal Choose ε,m, d such that ”most“ edges of G go
between the sets Vi and Vj with ViVj ∈ E(R)

How many edges are not at the ”right place“?

# of edges inside Vi: at most k
(
n/k

2

)
< n2

k < n2

m

# of edges incident to V0: at most εn · n = εn2

# of edges between non-regular pairs:

at most ε
(
k
2

) (
n
k

)2
< εn2

# of edges between pairs of density < d:

at most
(
k
2

)
d
(
n
k

)2
≤ dn2
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Regularity graph contains an r-clique

Conclusion: If ε,m, and d is chosen such that

d+ 2ε+
1

m
<
γ

2
then ”most“ edges of G go between sets Vi and Vj
with ViVj ∈ E(R).

”most“ means at least
(
1− 1

r−1

) (
n
2

)
+ γ

2n
2

On the other hand: # of edges of G going between
sets Vi and Vj with ViVj ∈ E(R):

at most |E(R)| ·
(
n
k

)2

Hence(
1−

1

r − 1

) (n
2

)
+
γ

2
n2 ≤ |E(R)| ·

(
n

k

)2

(
1−

1

r − 1

) (k
2

)
+
γ

2
k2 ≤ |E(R)|

Choose m = m(γ) such that
ex(m,Kr) ≤

(
1− 1

r−1

) (
m
2

)
+ γ

2m
2

Then Turán’s Theorem ⇒ R contains a Kr
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Finding Trt,r

There are r classes Vi1, . . . , Vir such that (Vij , Vi`) is
an ε-regular pair of density at least d, for every 1 ≤
j < ` ≤ r.
Let ñ = |Vij |. Then n

k ≥ ñ ≥
1−ε
k n.

We find a Trt,r in G[Vi1 ∪ · · · ∪ Vir].

Lemma
Let (A,B) be an ε-regular pair with d(A,B) ≥ d
Let Y ⊆ B be a subset with |Y | ≥ ε|B|.
Then

|{v ∈ A : dY (v) < (d− ε)|Y |}| < ε|A|.

Proof. Otherwise the subsets
Y ⊆ B and {v ∈ A : dY (v) < (d − ε)|Y |} ⊆ A

would contradict the ε-regularity of (A,B). 2

For a set S ⊆ V let Γ(S) = ∩v∈SN(v) denote the
set of common neighbors of the vertices of S.
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Finding Trt,r

(d− ε)t−1ñ ≥ εñ
(r − 1)εñ+ t− 1 < ñ

⇓
∃S1 ⊆ V1, |S1| = t

|ΓVi(S1)| ≥ (d− ε)tñ for i = 2,3, . . . , r

(d− ε)2t−1ñ ≥ εñ
(r − 2)εñ+ t− 1 < (d− ε)tñ

⇓
∃S2 ⊆ V2, |S2| = t

|ΓVi(S1 ∪ S2)| ≥ (d− ε)2tñ for i = 3, . . . , r

.

.

.

(d− ε)(r−1)t−1ñ ≥ εñ
εñ+ t− 1 < (d− ε)(r−2)tñ

⇓
∃Sr−1 ⊆ Vr−1, |Sr−1| = t

|ΓVr(∪
r−1
i=1Si)| ≥ (d− ε)(r−1)tñ
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Finding Trt,r

∃Sr ⊆ NVr(∪
r−1
i=1Si), |Sr| = t

and thus G[S1 ∪ · · · ∪ Sr] contains a Trt,r provided

(d− ε)(r−1)tñ > t− 1

Strongest of the blue conditions:

(d− ε)(r−1)t−1 ≥ ε
Let’s not forget:

d+ 2ε+
1

m
<
γ

2

Choose, for example: m = 6
γ
∗

d = γ
6

ε = 1
r ·
(
d
2

)t(r−1)

Green conditions are satisfied by choosing a large
enough threshold vertex number N = N(r, t, γ).

r, t, γ ; m, d, ε ; M ; N

∗This is also a large enoughm for using Turán’s Theorem earlier.
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The Erdős-Turán conjecture

A set S of positive integers is k-AP-free if
{a, a + d, a + 2d, . . . , a + (k − 1)d} ⊆ S implies
d = 0.

sk(n) = max{|S| : S ⊆ [n] is k-AP-free}

How large is sk(n)? Could it be linear in n?

Erdős-Turán Conjecture (Szemerédi’s Theorem)
For every constant k, we have

sk(n) = o(n).

Construction (Erdős-Turán, 1936)

s3(n) ≥ n
log 2
log 3.

S = {s : there is no 2 in the ternary expansion of s}

S is 3-AP-free. For n = 3l, |S ∩ [n]| = 2l

Roth’s Theorem (1953) s3(n) = o(n).
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History of Szemerédi’s Theorem

Szemerédi’s Theorem (1975) For any integer k ≥ 1
and δ > 0 there is an integer N = N(k, δ) such that
any subset S ⊆ {1, . . . , N} with |S| ≥ δN contains
an arithmetic progression of length k.

Was conjectured by Erdős and Turán (1936).
Featured problem in mathematics, inspired lots of gre-
at new ideas and research in various fields;

• Case of k = 3: analytic number theory
(Roth, 1953; Fields medal)
• First proof for arbitrary k: combinatorial

(Szemerédi, 1975)
• Second proof: ergodic theory (Furstenberg, 1977)
• Third proof: analytic number theory

(Gowers, 2001; Fields medal)
• Fourth proof: fully combinatorial

(Rödl-Schacht, Gowers, 2007)
• Fifth proof: measure theory (Elek-Szegedy, 2007+)
One of the ingredients in the proof of Green and Tao:
“primes contain arbitrary long arithmetic progression”
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Applications of the Regularity Lemma

Removal Lemma For ∀γ > 0 ∃δ = δ(γ) such that
the following holds. Let G be an n-vertex graph such
that at least γ

(
n
2

)
edges has to be deleted from G

to make it triangle-free. Then G has at least δ
(
n
3

)
tri-

angles.

Proof. Apply Regularity Lemma (Homework).

Roth’s Theorem For ∀ε > 0 ∃N = N(ε) such that
for any n ≥ N and S ⊆ [n], |S| ≥ εn,
there is a three-element arithmetic progression in S.

Proof. Create a tri-partite graph H = H(S) from S.

V (H) = {(i,1) : i ∈ [n]} ∪ {(j,2) : j ∈ [2n]}
∪{(k,3) : k ∈ [3n]}

(i,1) and (j,2) are adjacent if j − i ∈ S
(j,2) and (k,3) are adjacent if k − j ∈ S
(i,1) and (k,3) are adjacent if k − i ∈ 2S
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Roth’s Theorem — Proof cont’d

(i,1), (i+ x,2), (i+ 2x,3) form a triangle
for every i ∈ [n], x ∈ S.
These |S|n triangles are pairwise edge-disjoint.

⇓
At least εn2 ≥ ε

18

(|V (H)|
2

)
edges must be removed

from H to make it triangle-free.

Let δ = δ
(
ε

18

)
provided by the Removal Lemma.

There are at least δ
(|V (H)|

3

)
triangles in H.

S has no three term arithmetic progression

⇓
{(i,1), (j,2), (k,3)} is a triangle iff j−i = k−j ∈ S.
Hence the number of triangles in H is equal to
n|S| ≤ n2 < δ

(
6n
3

)
, provided n > N(ε) :=

⌊
1
δ

⌋
. 2
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Behrend’s Construction

Construction (Behrend, 1946)

s3(n) ≥ n1−O
(

1√
logN

)
.

Construct set of vectors ā = (a0, a1, . . . , al−1):

Vk = {ā ∈ ZZl : ‖ā‖2 = k, 0 ≤ ai <
d

2
for all i < q},

where ‖ā‖ =
√∑l−1

i=0 a
2
i .

Interpret a vector ā ∈ {0,1, . . . , d− 1}l as an integer
written in d-ary:

nā =
l−1∑
i=0

aid
i.

Let

Sk = {nā : ā ∈ Vk}
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Claim Sk ⊆ [dl] is 3-AP-free for every k.

Proof. Assume nā + nb̄ = 2nc̄.
Then ai + bi = 2ci for every i < l, because ai + bi
and 2ci are both < d (so there is no carry-over)
So ā+ b̄ = 2c̄. But

‖2c̄‖ = 2‖c̄‖ = 2
√
k = ‖ā‖+ ‖̄b‖ ≥ ‖ā+ b̄‖,

and equality happens only if ā and b̄ are parallel. Since
they are of the same length, we conclude ā = b̄. 2

Take the largest Sk. Bound its size by averaging:

ā ∈ {0,1, . . . , d− 1}l⇒ ‖ā‖2 < ld2,
so there is a k for which

|Sk| ≥
|
⋃
i Si|
ld2

=
(d/2)l

ld2
=
dl−2

2ll

For given N , choose l =
√

logN and d = N
1
l .


