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On van der Waerden’s Theorem. Szemerédi’s Theorem is hard to prove, we
rather consider the following weakening about monochromatic arithmetic progres-
sions in two-colored integers.

Is it unavoidable to have a monochromatic (m.c.) arithmetic progression of
length 3 (a 3-AP) if we two-color the integers?
YES, of course.
Roth’s Theorem says that the larger of the two color-classes, the one whose
density is at least 50% , will contain a 3-AP. However, Roth’s Theorem is too big
of a gun to shoot down such a simple statement.

Let c : [N ]→ {red, blue} be an arbitrary two-coloring of the first N integers
with no m.c. 3-AP. (We do not specify N now, only at the very end. We work
under the assumption that it is “large enough”.) In any block of five consecutive
integers y, y + 1, y + 2, y + 3, y + 4 we find a triple of integers forming a 3-AP,
such that the color of the first two is the same, while the third one (of course)
has the opposite color. (If c(y) = c(y + 1) then y, y + 1, y + 2 is such a triple, if
c(y) = c(y + 2) then y, y + 2, y + 4 is such a triple, otherwise y + 1, y + 2, y + 3
is such a triple.) Let us consider the first 5 · (25 + 1) integers as the union of
25 + 1 = 33 disjoint blocks of fives. Each of these blocks can have one of the
25 coloring patterns on it. By the Pigeonhole Principle (PP), two of these 33
blocks have identical coloring pattern. In these two blocks we have two 3-APs:
a1, a1 + d, a1 + 2d in the first block and a2, a2 + d, a2 + 2d in the second one, so
that c(a1) = c(a1 + d) = c(a2) = c(a2 + d) (by symmetry we can assume that this
color is red) , and c(a1 + 2d) = c(a2 + 2d) is of the opposite color, that is, blue.
But then what is the color of z = a1 +2d+2d′? (Here we denote by d′ = a2−a1.)
If c(z) is blue then a1 + 2d, a2 + 2d, z is a blue 3-AP (with difference d′). If c(z)
is red then a1, a2 + d, z is a red 3-AP (with difference d′+ d). So we proved that
there is a m.c. 3-AP if N = 5 · (25 + 1 + 25) = 325.

Proposition. For any two-coloring of [325] there is a m.c. 3-AP.
Remark. BTW The tight answer is: N = 9 integers are enough.

Can we find a m.c. 4-AP if N is even larger enough? YES, of course, Sze-
merédi’s Theorem for arithmetic progressions of length 4 implies that the larger
of the two color classes contains a 4-AP. The proof of this would be several level
harder than the one of Roth’s Theorem. Can we apply somehow the previous
idea to prove just the coloring statement? How large should N be for such proof
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to work?
Let c : [N ] → {red , blue} be a coloring with no m.c. 4-AP. How large blocks
should we consider to use the previous idea? Well, we know that within 325 con-
secutive integers there are three forming a m.c. 3-AP. The extension of this 3-AP
to a 4-AP is within the next 162 integers. So any block of 487 consecutive integers
contains a 4-AP a1, a1+d, a1+2d, a1+3d, such that c(a1) = c(a1+d) = c(a1+2d)
and (of course) c(a1 + 3d) is of the opposite color. IF (and it’s a big IF) we
were able to find a 3-AP of blocks having the same coloring pattern, we would
be DONE. (Indeed: then we would have three 4-APs a1, a1 + d, a1 + 2d, a1 + 3d,
a2, a2+d, a2+2d, a2+3d, a3, a3+d, a3+2d, a3+3d, such that the starting integers
a1, a2, a3 form a 3-AP (say with difference d′), furthermore c(a1) = c(a1 + d) =
c(a1 + 2d) = c(a2) = c(a2 + d) = c(a2 + 2d) = c(a3) = c(a3 + d) = c(a3 + 2d), say
red, and c(a1 + 3d) = c(a2 + 3d) = c(a3 + 3d) is the opposite color blue.

Then the integer z = a1 + 3d + 3d′ will be the fourth member of a m.c. AP
(which either starts at a1 and has difference d+d′ (if its color is red) or at a1+3d
and its difference is d′ (if its color is blue)).)
So how do we find this 3-AP of blocks having the same coloring pattern?? It
was so easy in the previous proof, when we just needed to find two (one can say,
a 2-AP of) blocks with the same coloring pattern: we just used the Pigeonhole
Principle (PP). It turns out that we must do the same here except the PP-use
is in a bit more complex setting. Consider each block (of length 487) as one
entity and each of its 2487 possible coloring patterns as one possible color of this
”entity” and try to find a m.c. 3-AP in this setup. Hence, it seems that to find
a m.c. 4-AP we need to extend first the above Proposition to arbitrary number
of colors.

Theorem. For any r there is a number W = W (r, 3), such that no matter how
we color the first W integers with r colors, there will be a m.c. 3-AP.

Remark. By the above, we can then use this Theorem to find a m.c. 4-AP in
any two-coloring of the first 487 ·W (2487, 3) integers. (This is an admittedly weak
bound, it would be enough to two-color 35 integers. But while this proof gen-
eralizes to arbitrary number of colors and length of APs, the 35 bound is ad hoc.)

Proof of Thm. Induction on r. For the base case we can take r = 2 which
is just our Proposition, which shows that W (2, 3) ≤ 325. We prove first the
statement for r = 3 to see better the pattern. Let us have a 3-coloring c :
[N ] → {red, blue, yellow} with no m.c. 3-AP. In any block of 4 consecutive
integers we find two identically colored, so in any block of 7 integers we find a
3-AP a1, a1 + d, a1 + 2d, such that c(a1) = c(a1 + d) and (of course) c(a1 + 2d) is
different from the color of the other two. Taking 37+1 consecutive disjoint blocks
of 7 integers, we find two that have identical coloring pattern. Hence there are
two arithmetic progressions a1, a1 + d, a1 + 2d and a2, a2 + d, a2 + 2d, such that
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c(a1) = c(a1 + d) = c(a2) = c(a2 + d), say is red, and c(a1 + 2d) = c(a1 + 2d) is
NOT red, say is blue. Then the integer z = a1 + 2d + 2d′ (where a2 = a1 + d′)
does not have color red (because of the 3-AP a1, a2 + d, z) and it does not have
color blue (because of the 3-AP a1 + 2d, a2 + 2d, z). So z is colored yellow.

Hence in any block of 7 · (2 · 37 + 1) integers we find a1, d, d
′ such that c(a1) =

c(a1 + d + d′) is one color, c(a1 + 2d) = c(a1 + 2d + d′) is another color, and (of
course) c(a1 + 2d+ 2d′) is the third color.

Let’s find two blocks of 7 · (2 · 37 + 1) integers with identical color pattern.
These surely exists if we take 37·(2·37+1) + 1 blocks. Let the distance of these two
identically colored blocks be d′′.

In the first block we find a1, d, d
′ such that c(a1) = c(a1 + d+ d′), say of color

red, c(a1 +2d) = c(a1 +2d+d′) is of another color, say blue, and c(a1 +2d+2d′)
is of the third color (in our setup it is assumed to be yellow). Since the second
block has identical color pattern we also have that c(a1 +d′′) = c(a1 +d+d′+d′′)
is red, c(a1 + 2d+ d′′) = c(a1 + 2d+ d′ + d′′) is blue, and c(a1 + 2d+ 2d′ + d′′) is
yellow.

Now depending on the color of the integer y = a1 + 2d + 2d′ + 2d′′ we have
a m.c. 3-AP (the possibilities: in color red a1, a1 + d + d′ + d′′, y, in color blue

a1 +2d, a1 +2d+d′+d′′, y, and in color yellow a1 +2d+2d′, a1 +2d+2d′+d′′, y.)
And we are done for r = 3 colors. I am sure I made a mistake somewhere with
the numbers, but if not then clearly W (3, 3) ≤ (2 · 37·(2·37+1) + 1) · (7 · (2 · 37 + 1)).

Now we just need to iterate this idea and we get a bound on W (r, 3), which
then we can plug into the formula 487 · W (2487, 3) to get an upper bound to
guarantee a m.c. 4-AP in two-colored sequences.

Hmmm..... The bound is a bit wild.
The general theorem can be formulated as follows. Let

W (r, k) = min{N ∈ N : for any r-coloring c : [N ]→ [r] there is a m.c. k-AP}.

Van der Waerden’s Theorem For any integers r, k ≥ 1 W (r, k) <∞.

Proof: Analogous to the above idea. A family of crossing k-APs is a family of
k-APs with starting elements a(1), . . . , a(`), and differences d1, . . . , d`, respectively
such that the (k + 1)st element of each of these APs is the same integer: a(1) +
kd1 = . . . = a(`) + kd`

Let L(r, k, `) be the smallest positive integer N such that for any r-coloring
c : [N ]→ [r] there is a m.c. (k + 1)-AP or a family of ` crossing m.c. k-APs in `
distinct colors.

We show by induction on k that L(r, k, `) <∞ for every k ≥ 1 and r ≥ ` ≥ 1.
Then we are done, since W (r, k + 1) ≤ 2L(r, k, r).

Base case: L(r, 1, `) = ` for all ` ≤ r.
Let k ≥ 2: Induction on `.

For ` = 1, L(r, k, 1) ≤ W (r, k) < 2L(r, k − 1, r) <∞.
For ` ≥ 2, L(r, k, `) < 2W (r2L(r,k,`−1), k)2L(r, k, `− 1) <∞ �
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Remark The auxiliary function L used in this proof is a bit different from the
auxiliary function in the proof on the transparencies. It is still the same proof.

The bound following from this proof is enoooormous. For a long time there
was no primitive recursive upper bound known, until Shelah gave a proof for that.
The best known bound today is due to Gowers (who got the Fields-medal partly
for his work on this problem (or rather on the stronger Szemerédi’s Theorem)
and stands at a five times iterated exponential:

W (r, k) ≤ 22r
22

k+9

.

On Ramsey’s Theorem. Recall from Discrete Math I: Ramsey’s Theorem
in party of 6, Definition of Ramsey number. Given a coloring c : E(KN) →
{red, blue} we say that a subgraph K ∼= Kk is a ”red Kk” if c is constant red

on E(K). The definition of ”blue Kl” is analogous.

R(k, l) = min{N : ∀c : E(KN)→ {blue,red}∃ redKk or blueKl }

Examples: R(k, 2) = R(2, k) = k, HW: R(4, 3) = 9, R(5, 3) = 14, R(4, 4) = 18
R(4, 5) is known after a huge computer search. R(5, 5) is not known (today’s

computers are not fast enough to handle it). For R(6, 6) probably no computer
will ever be fast enough.

Definition of Paley-graph Pp, for primes p ≡ 1 (mod 4) (this congruence
assumption is needed to have that −1 is a quadratic residue modulo p, and that’s
only to make the definition of an edge symmetric):

Vertex set V (Pp) = Fp (field of p elements).
Edge set E(Pp) = {xy : x − y ∈ Qp}, where Qp = {z2 : z ∈ Fp} is the set of
quadratic residues modulo p.

In a Paley-graph every vertex has (p− 1)/2 neighbors, since |Qp| = (p− 1)/2.
P5 is the 5-cycle. It does not contain a K3 and no K̄3. This example, together

with the ”party of 6”-proposition proves that R(3, 3) = 6.
HW: P17 does not contain a K4 and no K̄4.
An alternative definition of Ramsey numbers is

R(k, l) = min{N : ∀G with |V (G)| = n, ω(G) ≥ k or α(G) ≥ l}

For a Paley-coloring just color a pair xy with red if x−y ∈ Qp, otherwise blue.

Theorem. R(k, l) ≤ R(k, l − 1) +R(k − 1, l)

4



Proof: Take N = R(k, l− 1) +R(k − 1, l) and an arbitrary red/blue coloring of
E(KN). Pick an arbitrary vertex x ∈ V .
Case 1: x has at least R(k − 1, l) red neighbors
Case 2: x has at least R(k, l − 1) blue neighbors
First of all: one of these cases does happen. (Otherwise there are at most R(k, l−
1)− 1 +R(k − 1, l)− 1 = N − 2 neighbors of x, a contradiction.)
In Case 1: if there is a red Kk−1 among the red neighbors of x, then together
with x they form a red Kk, done. Otherwise there is a blue Kl among the red
neighbors of x and we are also done.
Case 2 is analogous: if there is a blue Kl−1 among the blue neighbors of x, then
together with x they form a blue Kl, done. Otherwise there is a red Kk among
the blue neighbors of x and we are also done. �

Corollary For all k, l ≥ 1, R(k, l) ≤
(
k+l−2
k−1

)
. In particular, R(k, l) exists.

Proof. Induction on k + l, using the similar identity for binomial coefficients.
Corollary R(k, k) ≤ 4k.
The finiteness of R(k, l) is called Ramsey’s Theorem. The proof above with

the estimate is due to Erdős and Szekeres.
How about a lower bound?
A set of vertices of a graph G is called a homogenous set of G if it is a clique

or an independent set. A graph with no homogenous set of order k is called a
k-Ramsey graph.

How good Ramsey-graphs are the Paley-graph? It is not known. Numerical
data suggests that the largest clique (and hence also independent set) might be
much smaller than the square root of the number of vertices. For example, for
p = 6997 the clique number is only 17. (Shearer) However, provably it is only
known that the largest clique and independent set is at most of the order

√
p.

This gives R(k, k) = Ω(k2).
But for this we have the more trivial Turán-coloring: Partition (k−1)2 vertices

into parts of size k−1 and color each edge within parts by red and edges between
parts with blue. The largest m.c. clique has size k − 1, proving R(k, k) ≥
(k − 1)2 + 1. Pretty weak considering that the upper bound is exponential.

Is there something better?

Theorem (Erdős) R(k, k) ≥
√

2
k

Proof. By the probabilistic method (see in about three weeks). Only proves
existence; no ”construction”. �

Nobody is able to construct explicitly k-Ramsey-graphs with 1.000001k ver-
tices. One needs a quite unexpected idea even to construct something better than
k2 vertices. (We will come back to this question later in the semester when we
discuss the Linear Algebra method.)

$1000 dollar question: Determine limk→∞
k
√
R(k, k). (Currently it is not even

known that this limit exists. The existence of the limit alone would bring you
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$500.)

Application: (HW)
Theorem. Color the integers with r colors. Prove that there are three numbers
of the same color, such that one is equal to the sum of the other two.

Remark. Notice the similarity of this homework exercise to van der Waerden’s
Theorem. This exercise proves the existence of a monochromatic solution to
the equation x + y = z. Van der Waerden’s Theorem proves the existence of a
monochromatic solution to the equation x+ y = 2z.

Another application.
Proposition (Eszter Klein) Among 5 points in the plane in general position

(i.e. no three on a line) there are always at least 4 in convex position.
Happy Ending Problem (Klein) Let M(n) be the smallest number such

that among any set of M(n) points in the plane there are at least n in convex
position. Is M(n) finite?

M(3) = 3, M(4) = 5.
(a) there are two things that can happen to four points in general position:

they are either in convex position or not.
(b) n points are in convex position iff every four element subset is in convex

position. (Proof of ”if” statement: take convex hull, if there is point inside, it is
also contained in some triangle of an arbitrary triangulation of the convex hull:
these are four points in non-convex position.)

(c) among any 5 points there are four which are not in non-convex position
Ramsey framework:

(a) provides a natural two-coloring of the 4-subsets of the point set (red: ”convex
4-gon”, blue: ”non-convex 4-set”)
(b) says that we really want is a m.c. subset in color red of LARGE size (i.e., of
size n)
(c) says we CANNOT have a m.c. subset of size 5 in color blue.

We need Ramsey’s Theorem in a situation when we color 4-sets instead of
edges.

Definitions Graph: G = (V,E) on vertex set V with edge set E ⊆
(
V
2

)
Hypergraph: on vertex set V with edge set E ⊆ 2V

s-uniform hypergraph: if edge set E ⊆
(
V
s

)
Complete s-uniform hypergraph K

(s)
k on k vertices is defined by E(K

(s)
k ) =

(
[k]
s

)
.

Example. graph: 2-uniform hypergraph
Definition s-uniform Ramsey number R(s)(k, l) is the smallest integer N such

that for any 2-coloring c :
(
[N ]
s

)
→ {red, blue} there exists a subset Ir ⊆ [N ] such

that c(J) = red for every J ∈
(
Ir
s

)
or there exists a subset Ib ⊆ [N ] such that

c(J) = blue for every J ∈
(
Ib
s

)
Theorem R(s)(k, l) is finite for every s, k, l ≥ 1
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Proof. Induction on s: R(1)(k, l) = k + l − 1.
Let s ≥ 2. Induction on k + l.
Base cases: For k ≥ l, l < s, we have R(s)(k, l) = l,
for k ≤ l, k < s, we have R(s)(k, l) = k,
for k ≥ s, we have R(s)(k, s) = k,
and for l ≥ s, we have R(s)(s, l) = l.

Let c :
(
[N ]
s

)
→ {red, blue} be a two-coloring of the s-sets. Pick an arbitrary

vertex, say N ∈ [N ]. Canonical projection of c on the (s − 1)-sets of [N − 1]:
c∗ :

(
[N−1]
s−1

)
→ {red, blue} defined by c∗(A) := c(A ∪ {N}).

By induction (used for s − 1), there is a ”large” subset Jr ⊂ [N − 1] such that
every (s − 1)-subset of Jr is red or there is a ”large” subset Jb ⊂ [N − 1] such
that every (s− 1)-subset of Jb is blue.
How large should ”large” be?

In |Jr| it would be enough to have R(s)(k−1, l) vertices. This would guarantee
that either there is a m.c. l-subset in blue or an m.c (k−1)-subset in red , which
together with x would form an m.c. k-subset in red. (Remember that we are
within Jr!)
The argument for |Jb| is analogous.

So if N − 1 = R(s−1)(R(s)(k − 1, l), R(s)(k, l − 1)), then we are guaranteed to
have the appropriate size Jr or the appropriate size Jb. Hence R(s−1)(R(s)(k −
1, l), R(s)(k, l−1))+1 is an upper bound on R(s)(k, l) and its finiteness is implied
by the finiteness of the functions involved in this upper bound; these are all finite
by induction. �

Corollary M(n) ≤ R(4)(n, 5) <∞
Remark The best known bounds for M(n) are pretty far from each other:

2n−2 + 1 ≤M(n) /
4n

√
n
.

The lower bound is conjectured to be tight by Erdős and Szekeres. It is proven
to be tight for n = 3, 4, 5, 6.
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