Diskrete Mathematik II WS 2012 / 2013
Tibor Szabd

Solutions to Exercise Sheet 7

Exercise 17 (Constructive proof of Baranyai’s Theorem?:

Suppose n > 1. Baranayai’s Theorem guarantees that ([3:? ) has a decomposition into
perfect matchings, without explicitly describing the matchings. The purpose of this exercise
is to find a construction of the decomposition in the case p := 3n —1 > 3 is a prime number.

(i). Consider the field F, and denote by [} the invertible elements, i.e. the set {1,2,...,p—
1}. Define 7 : F} — F, by 7(z) = —2£2. Show that = is injective and 7°(z) = z, for
any x # p — 1.

(ii). Add an element u to F, and extend 7 to {u, 0} injectively in such a way that 7*(z) = ,
for any = € F, U {u}. Explain how this gives a perfect matching M, in ([3:? }). Using
algebraic operations on M, find the remainining (3"; 1) — 1 perfect matchings from
Baranyai’s theorem and prove that this is indeed a decomposition into disjoint perfect

matchings.

Solution:

The construction presented in this exercise is due to Thomas Beth. There are no known
constructions for k£ > 4 and to the best of my knowledge this is the only construction known
for k = 3.

(i). Clearly 7 is well defined. Now if 7(z) = 7(y) then y + zy = x + zy and hence x = y.
So 7 is injective. Furtermore, for z # p — 1 we have

n(z) = — 22,
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and the two values 7(x), 7?(x) are well-defined. We further have 7(p — 1) = 0.

(ii). We define 7(0) = v and 7(u) = p — 1.

For x # 0, the identity n(z) = x implies 2% + x + 1 = 0, from which we obtain z® = 1.
But p > 5 so z # 1. Then the order of z in F, is 3 and hence by Lagrange’s theorem,
3|p — 1 = 3n — 2, which is not possible. Also 7%(z) = z implies 2> + x + 1 = 0, so we get
7(z), 7% (x) # .



Hence 7 has all orbits of size 3, and thus defines a perfect matching M, on vertex set
F, U {u} ~ [3n], with edges represented by the orbits.

We will now define two actions on the 3-element subsets of F,, U {u}.

If a € F; and e C F, U {u} is any 3-set containing points x1, 3, r3, we define a - e as the
set {ax1, axe, axs}. This is well-defined, provided we assume au = u. We furthermore define
a - My as the collection {a - e : e € My}. Then a- M, is also a perfect matching.

If a € F) and e C F, U {u} is any 3-set containing points z1, x2, x5, we define a + e as the
set {a + 1,a + x2,a + x3}. This is well-defined, provided we assume a + u = w. Then if M
is any perfect matching, a + M is also a perfect matching.

Now the group F, is cyclic. Fix a generator v and consider the sets M; ; := {v' Mo+ :
0<i< ’%1, 0 <j <p—1}. Then by the above M, ; are all perfect matchings in F, U {u}
and there are 7@ = (3"2_ 1) of them. To prove Baranyai’s theorem it is therefore enough
to show that any 3-set appears in at most one matching.

So suppose for a contradiction that some 3-set e belongs to two distinct matchings M, ;
and My, k > i. Then e = vi-ep + 5 = vF ey + 1, for some e,es € My. Hence e; =
VP ey + 071 — j). W.lo.g. we may take i = 0 and j = 0. Consequently e; = v* - ey + 1
with 0 < k < E21

To simplify notation we set a := v*, b := [ and assume e; = {21, T2, 73}, €2 = {y1, Y2, y3},
with z; = a-y; + 0,1 <7< 3. W.lo.g. we assume 4, = 7(y1),y3 = 72(y1).

Note that we can not have a = 1 and b = 0, for then £ = 0 and the two matchings are
the same, a contradiction. We also can not have a = —1, for then a? = 1 and hence k = 7%1,
again a contradiction.

Now consider the case when u € e;. We assume y; = u (as all other cases follow by
permuting indices). Then x; = u. We also get yo = p—1,y3 = 0 and 25 = a(p—1)+b, x5 = b.

If x3 = m*(x1) = 0 then b =0 and so 23 =p—1 = a(p—1). Then a = 1, a contradiction.

So w9 = 7%(zy) =0and b=x3 = m(x;) =p—1. Then (a+1)(p—1) = 0, hence a = —1.
But as we have seen this is not possible.

Consequently we may assume that u ¢ e; and hence p — 1,0, u ¢ e; U es.

By the computation done at (i) we know that y, = —lJyrlyl and y3 = —yl—ﬁrl. We see that
2
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Consequently,
yi + oy + 1
a(y1 — y2) = a————— =11 — T3,
Y1
a(yr — ys) :G—y%+yl+l =T — T3
y1+1 ’
and therefore
aly; +y1+ 1) = yi(z1 — x2) = (y1 + 1) (21 — x3). (3)



First assume zo = 7(x;), 23 = 72(x;). Then from (3) and using (1), (2) with y; replaced
by z;, we get
vyt
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from which we deduce that 1 = y;. But then x; = y;,1 < i < 3, and furthermore b = 0,a =
1, a contradiction.
Therefore the only possibility is that o = 7%(zy), 23 = 7(21). Again from (3) and (1),
(2), we obtain
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from which we deduce that y; = —(z1 + 1). But then y; = i, Y2 = é and y3 = i We thus
obtain the system of equations

— a
T = Z + b7
— a
Ty = z3 + b7
— a
r3 = T + 0.
Subtracting cyclically we get
T3 — T2
1 — T2 = aQ
T2T3
Ty — T3
Tog — X3 = a
T1T3
o — I
T3 — X1 =a .
T1X2

Consequently,

a® = (—1)az3x573.
We now use the identity z7(x)7*(z) = 1, which is true for any 2 € F; \ {p — 1}. Then
a® = —1, and hence a® = 1. As a ¢ {1, -1}, the order of a in F} is 3 or 6. Therefore by

Lagrange’s theorem again, 3|p — 1 = 3n — 2, a contradiction.
This completes the proof.



