
Diskrete Mathematik II WS 2012 / 2013
Tibor Szabó

Solutions to Exercise Sheet 7

Exercise 1+ (Constructive proof of Baranyai’s Theorem):
Suppose n ≥ 1. Baranayai’s Theorem guarantees that

(
[3n]
3

)
has a decomposition into

perfect matchings, without explicitly describing the matchings. The purpose of this exercise
is to find a construction of the decomposition in the case p := 3n− 1 ≥ 3 is a prime number.

(i). Consider the field Fp and denote by F∗
p the invertible elements, i.e. the set {1, 2, . . . , p−

1}. Define π : F∗
p → Fp by π(x) = −1+x

x
. Show that π is injective and π3(x) = x, for

any x 6= p− 1.

(ii). Add an element u to Fp and extend π to {u, 0} injectively in such a way that π3(x) = x,

for any x ∈ Fp ∪ {u}. Explain how this gives a perfect matching M0 in
(
[3n]
3

)
. Using

algebraic operations on M0 find the remainining
(
3n−1

2

)
− 1 perfect matchings from

Baranyai’s theorem and prove that this is indeed a decomposition into disjoint perfect
matchings.

Solution:
The construction presented in this exercise is due to Thomas Beth. There are no known

constructions for k ≥ 4 and to the best of my knowledge this is the only construction known
for k = 3.

(i). Clearly π is well defined. Now if π(x) = π(y) then y+ xy = x+ xy and hence x = y.
So π is injective. Furtermore, for x 6= p− 1 we have

π(x) = −1 + x

x
,

π2(x) = −1 + π(x)

π(x)
= − 1

x+ 1
,

π3(x) = −1 + π2(x)

π2(x)
= x,

and the two values π(x), π2(x) are well-defined. We further have π(p− 1) = 0.
(ii). We define π(0) = u and π(u) = p− 1.
For x 6= 0, the identity π(x) = x implies x2 + x + 1 = 0, from which we obtain x3 = 1.

But p ≥ 5 so x 6= 1. Then the order of x in F∗
p is 3 and hence by Lagrange’s theorem,

3|p − 1 = 3n − 2, which is not possible. Also π2(x) = x implies x2 + x + 1 = 0, so we get
π(x), π2(x) 6= x.
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Hence π has all orbits of size 3, and thus defines a perfect matching M0 on vertex set
Fp ∪ {u} ' [3n], with edges represented by the orbits.

We will now define two actions on the 3-element subsets of Fp ∪ {u}.
If a ∈ F∗

p and e ⊆ Fp ∪ {u} is any 3-set containing points x1, x2, x3, we define a · e as the
set {ax1, ax2, ax3}. This is well-defined, provided we assume au = u. We furthermore define
a ·M0 as the collection {a · e : e ∈M0}. Then a ·M0 is also a perfect matching.

If a ∈ Fp and e ⊆ Fp ∪{u} is any 3-set containing points x1, x2, x3, we define a+ e as the
set {a+ x1, a+ x2, a+ x3}. This is well-defined, provided we assume a+ u = u. Then if M
is any perfect matching, a+M is also a perfect matching.

Now the group F∗
p is cyclic. Fix a generator v and consider the sets Mi,j := {vi ·M0 + j :

0 ≤ i < p−1
2
, 0 ≤ j ≤ p − 1}. Then by the above Mi,j are all perfect matchings in Fp ∪ {u}

and there are p(p−1)
2

=
(
3n−1

2

)
of them. To prove Baranyai’s theorem it is therefore enough

to show that any 3-set appears in at most one matching.
So suppose for a contradiction that some 3-set e belongs to two distinct matchings Mi,j

and Mk,l, k ≥ i. Then e = vi · e1 + j = vk · e2 + l, for some e1, e2 ∈ M0. Hence e1 =
vk−i · e2 + v−i(l − j). W.l.o.g. we may take i = 0 and j = 0. Consequently e1 = vk · e2 + l
with 0 ≤ k < p−1

2
.

To simplify notation we set a := vk, b := l and assume e1 = {x1, x2, x3}, e2 = {y1, y2, y3},
with xi = a · yi + b, 1 ≤ i ≤ 3. W.l.o.g. we assume y2 = π(y1), y3 = π2(y1).

Note that we can not have a = 1 and b = 0, for then k = 0 and the two matchings are
the same, a contradiction. We also can not have a = −1, for then a2 = 1 and hence k = p−1

2
,

again a contradiction.
Now consider the case when u ∈ e2. We assume y1 = u (as all other cases follow by

permuting indices). Then x1 = u. We also get y2 = p−1, y3 = 0 and x2 = a(p−1)+b, x3 = b.
If x3 = π2(x1) = 0 then b = 0 and so x2 = p− 1 = a(p− 1). Then a = 1, a contradiction.
So x2 = π2(x1) = 0 and b = x3 = π(x1) = p− 1. Then (a+ 1)(p− 1) = 0, hence a = −1.

But as we have seen this is not possible.
Consequently we may assume that u /∈ e2 and hence p− 1, 0, u /∈ e1 ∪ e2.
By the computation done at (i) we know that y2 = −1+y1

y1
and y3 = − 1

y1+1
. We see that

y1 − y2 =
y21 + y1 + 1

y1
, (1)

y1 − y3 =
y21 + y1 + 1

y1 + 1
. (2)

Consequently,

a(y1 − y2) = a
y21 + y1 + 1

y1
= x1 − x2,

a(y1 − y3) = a
y21 + y1 + 1

y1 + 1
= x1 − x3,

and therefore
a(y21 + y1 + 1) = y1(x1 − x2) = (y1 + 1)(x1 − x3). (3)
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First assume x2 = π(x1), x3 = π2(x1). Then from (3) and using (1), (2) with yi replaced
by xi, we get

y1
x1

=
y1 + 1

x1 + 1
,

from which we deduce that x1 = y1. But then xi = yi, 1 ≤ i ≤ 3, and furthermore b = 0, a =
1, a contradiction.

Therefore the only possibility is that x2 = π2(x1), x3 = π(x1). Again from (3) and (1),
(2), we obtain

y1
x1 + 1

=
y1 + 1

x1
,

from which we deduce that y1 = −(x1 + 1). But then y1 = 1
x2
, y2 = 1

x3
and y3 = 1

x1
. We thus

obtain the system of equations 
x1 = a

x2
+ b,

x2 = a
x3

+ b,

x3 = a
x1

+ b.

Subtracting cyclically we get

x1 − x2 = a
x3 − x2
x2x3

,

x2 − x3 = a
x1 − x3
x1x3

,

x3 − x1 = a
x2 − x1
x1x2

.

Consequently,
a3 = (−1)x21x

2
2x

2
3.

We now use the identity xπ(x)π2(x) = 1, which is true for any x ∈ F∗
p \ {p − 1}. Then

a3 = −1, and hence a6 = 1. As a /∈ {1,−1}, the order of a in F∗
p is 3 or 6. Therefore by

Lagrange’s theorem again, 3|p− 1 = 3n− 2, a contradiction.
This completes the proof.
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