Discrete Mathematics 11 WS 2012 / 2013
Tibor Szabo

Some notes about the first week.

These are some rough informal notes about the material of the first week — to augment
your own notes. This is only part, the rest (Arthur-Merlin, P/NP, Travelling Salesman
approximation) can be found in the book of Lovasz-Pelikan-Vesztergombi)

Algorithms, efficiency.

Algorithm: (informally) finite set of precise instruction for performing a calculation or
solving problem.

Input, Output, (Example: Kruskal’s Algorithm. Input: weighted graph (in form of an
n-by-n matrix), Output: list of edges (pairs of vertices) forming a spanning tree and having
minimum weight)

Definiteness: each step of the algorithm must be defined precisely

Correctness: correct output should be produced for every input

Finiteness: produce output in finitely many steps

How to describe an algorithm? different amount of detail: computer program; pseu-
docode; words/sentences; precision!!! (at every imaginable scenario the algorithm should
uniquely define the next step. In a wordy description we might skip some of the precision
(if it is indeed insignificant with respect to correctness or our running time analysis), for
example we might not want to define precisely which ”arbitrary” element the algorithm
chooses. (This could mean for example that there is a predefined order on the elements and
the algorithm chooses the smallest eligible element. However, in case we choose to ignore
what ”arbitrary” means for us, we must live with the "devil” giving us his choice, which will
be the "worst” possible element for us.))

Analysis: How fast is the algorithm? How much space (memory) does it require? time
complexity; space complexity;

Running time: number of bit operations/elementary steps/... How fast is an algorithm
A? Running it on input I takes T'(A, I) steps.

Given an integer n, how long does it take that algorithm A surely finishes on any input
of size n? No matter which input of size n it is given! Take the maximum of T'(A, I) over
all inputs I of size n, denote this with 7's(n). This is the worst-case complexity of A. This
is the worst case complexity of A.

Average-case complexity: Given a probability distribution on all inputs of size n (Say
the uniform distribution: choose an input uniformly at random among all inputs of size n)
take the expected value of T'(A, I) and denote it with AT4(n). We will not talk about this
in this course.

What is considered efficient? Roughly: an algorithm whose running time is bounded by
a polynomial of the input size. Why is this a "reasonable” definition? Consider the following

table:

] Input size H Number of bit operations
n n nlogn n? 2n n!
10 0.00000001 sec | 0.00000003 sec | 0.0000001 sec 0.000001 sec 0.003 sec
100 0.0000001 sec | 0.0000007 sec | 0.00001 sec | 40000000000000 years | > 100 years
1000000 0.001 sec 0.02 sec 17 min > 10 years
Estimates.

e Stirling formula: n! ~ /27n (%)n
e Binomial coefficients: (%)k < (2’) < (%)k
e Almost 1: e 1% <l—-zx<e™*

Our Asymptotic notation: Let f,g : N — R be two functions.
e f(n) =0(g(n)) if there exist constants C' and K such that |f(n)| < C|g(n)| for every

)
e f(n) = O(g(n)) (or sometimes we write f(n) ~ g(n)) if f(n) = O(g(n)) and f(n) =
Q(g(n))
e f(n) =o0(g(n)) (or sometimes we write f(n) < g(n)) if lim, % =0
o f(n) =w(g(n))if g(n) = o(f(n))
o f(n)~g(n)if lim, g(—:; =1
Sorting.
Given n distinct numbers aq, ao, ..., a,, how long does it take to sort them completely.

That is find the 7 € S,, such that a1y < ar2) < -+ < Ggr(n). How should we measure
running time? We count number of comparisons: "Is a; < a;7”

If A is a sorting algorithm and = € S,, then let T'(A,7) be the number of compar-
isons A does until outputting a,a) < ar@) < -+ < ag@») wWhen starting with the sequence
a1,09, ..., Q.

Let T4(n) = max,es, T(A,) be the worst case running time of algorithm A.

Algorithm MergeSort(ay,as, ..., a,)

Step 1. Divide sequence into (almost) equally long parts (a1, ..., a[n/2)) and (ajn/2j41;- - - an)

Step 2. Apply MergeSort on both of them and create ordered lists a, 1) < -+ < G (|n/2))
and Gy (|n/2j41) < *** < Gry(ny, Where mp is a permutation of {1,...,|n/2]} and m; is a
permutation of {|n/2] +1,...,n}.

Step 3. Merge the two sorted lists by repeatedly comparing the two smallest elements, removing
the smaller one from its list and placing it to the top of the final list.

Let M(n) = Tyergesort(n) the worst case running time of MergeSort. For the simpler
analysis, first we assume that n = 2¥. Then

M(n) <2M(n/2) +n — 1.
So

M@2F) <2M@"Y 428 —1<2(2M @2 425 — 1) 428 — 1

IM(2F %) 42k —2 42 —1

(VAN VAN VAR VAN
S

M@ 42k — (2 —1) <2 (2M (2T + M = 1) i 2P — (27— 1)

IN

< 2M(1) 4+ k2F — (28 — 1) = nlogyn —n + 1,

since M (1) = 0 (we do not need to make single comparison if there is only one number on
the list).

How fast is MergeSort compared to other sorting algorithms? Is there a faster one?
One which maybe sorts just with O(nloglogn) comparisons? This question involves the
complexity of the sorting problem itself. What is the fastest possible algorithm that will sort
n numbers? How many comparison queries must it make in the worst case?

These are type of questions we must immediately ask when we see an algorithm. Is
there a faster one? This question is very difficult in most of the cases. As the story of
Arthur and Merlin indicated we do not expect an algorithm which decides whether a graph
is Hamiltonian or not in polynomial time. To prove this we would need to consider all
possible algorithms for deciding Hamiltonicity of a graph and for each of them come up with
an example of a graph (or rather a graph sequence on an increasing number of vertices) such
that the algorithm runs on the graph longer than any polynomial time.

Complexity of a problem: taking the "best algorithm” what is its worst case complexity?
Formally, we look at the minimum of T4(n) taken all algorithm solving the problem. In
general it is very difficult to give lower bounds.

Let T'(n) = ming T4(n) the worst case running time of the ”fastest” sorting algorithm.

By the analysis of MergeSort we have an upper bound: T'(n) < nlogy,n +n — 1. This
is one of the rare examples of a problem when we can give a tight lower bound. This is
mostly due to the fact, that there is a very efficient algorithm (MergeSort) which is almost
as good as the limit of any algorithm established by some ”simple” reason: the information
theoretic lower bound. This practically means the following: 1 bit of information (a 0 or a
1) cannot be sent with less than 1 bit. After T'(n) questions (each of which has two possible
answers YES or NO) we obtain T'(n) bits of information. If after asking T'(n) questions

we gained enough information which of the n! permutations is the correct one. Well, how
much information is that? To describe an element of a n!-element set we need to use at least
[log,(n!)] bits. So T'(n) should be at least as large as log,(n!).

To argue formally, let us fix an arbitrary sorting algorithm A with worst case complexity
T(n). We prove that if 27 < n!, then there exist a permutationm, € S, such that A gives
an incorrect output when run with input m4. Such an algorithm consists of a description
of the next comparison query in any imaginable scenario (history) of the algorithm. Each
answer to a question of S, reduces the set of permutations that are still possible as a solution.
For each i =0,1,2,...,T(n) we inductively define a partition of S,, of all permutations into 2*
subsets S, indexed by vectors v € {Y ES, NO}* with the property that for any permutation
m € S, if we run A with input 7, then for every j = 1,2...,7 we get answer v; to the jth
question of A. The set S, contains all permutations that are still possible after receiving
answers (vy, ..., v;) for the first i questions of A.

For the empty vector v = () we define the 1-element partition Sy = S,,. Assume that i > 0
and we have defined the appropriate partition for i. For a given vector v € {Y ES, NO}!
consider the set S, of permutations that satisfy the first ¢ questions that were asked. Given
these answers, the (i 4+ 1)th question of A is specified, say it is: "Is a, < a,?” (Note that
this question could depend on the answers to the first ¢ queries.) Then the answer to the
(¢ + 1)th query of Algorithm partitions S, according to whether a, < a, or a, > a,. If
a, < a4 for some permutation m € S,, then 7 is put into set S,, ., vEs, otherwise it is put
into Sm,...,vi,NO-

Since we assumed 27(™ < !, after T(n) steps there is a partition of S, into less than n!
parts, hence by the Pigeonhole Principle, there is a part S, which contains more than one
distinct permutations. The algorithm A, when receiving the answers (vy,...,v7x)) in this
order, will output a permutation 7 in at most 7'(n) steps. Then m € S,, but there exists
another permutation 74 € S,, T4 # 7, such that upon input 74, the algorithm A would ask
the same questions, would receive the same answers and hence would give the same output
7, which in this case would be wrong.

So 27 > n! and hence by Stirling’s formula

1
T(n) > logy(n!) =nlogy,n — nlog, e + 5 log, n + logy V21 + 0(1) = nlogy n(1 4 o(1)).

Hence the MergeSort algorithm has asymptotically optimal worst case running time.

Running time of Kruskal’s Algorithm. Recall Kruskal’s Algorithm from Discrete
Math I. Given a connected graph G with edge weights w : E(G) — R. The algorithm does
the following.

e order edges according to weight: w(e;) < -+ < w(ey)

e Maintain a spanning forest H. Start with V(H) = V(G) and E(H) = (). For each
vertex v, maintain an index ¢, denoting the index of the component v is in. Start with

c({vi}) =i

e Iteratively, following the above order, check whether the next edge uw with smallest
weight creates a cycle. For this check whether ¢, = ¢,,. If YES, do nothing and iterate.
If NO, then update H := H + uw and for every z € V with ¢, = ¢,, update ¢, := ¢,.
Then iterate.

What is the running time for a graph with n vertices and m edges? The sorting at the
beginning takes O(mlog m) comparisons. In each iteration we check whether they are in the
same component of H, that is, whether ¢, = ¢, which takes just one step, then we either
do nothing more or perform the updating of the index of the components of each vertex,
which takes at most O(n) steps. There are m iterations, so the cumulative running time is
O(mlogm)+ O(nm). (With appropriate data structure the second step only needs mlogm
steps)

