
Diskrete Mathematik II WS 2012 / 2013
Tibor Szabó

Exercise Sheet 1

Due date: Oct 23rd, 12:30 PM, beginning of exercises
NO LATE SUBMISSIONS!

You should try to solve and write up all the exercises. You are welcome to submit at
most two neatly written exercises each week. You are encouraged to submit in pairs, but
don’t forget to mark the name of the scriber.

Exercise 1.

(a) For each pair of expressions (A,B) below, determine whether A is O, o,Ω, ω or Θ of B

(recall that A = ω(B) iff B = o(A)).

A B
log(n!) dlog ne!
n! nn

log(n!) log(nn)
(log3(log2 n))lnn ne

(b) Argue formally from the definition that the O(·) is a transitive relation; that is, show
that if f(n) = O(g(n)) and g(n) = O(h(n)), then f(n) = O(h(n)).

Exercise 2 (Binary search).
For this exercise we assume that we are given a vector A of n integer numbers, which is

stored in a continous sequence of memory locations in a computer. We assume that accessing
the i-th element A[i] of the vector takes one unit of time, for any 1 ≤ i ≤ n, and any
comparison or algebraic operation between two numbers (such as addition, multiplication,
division, etc.) also takes one unit of time.

Most importantly, we assume that the elements of the vectors are increasing integers,
that is, A[i] ≤ A[i+ 1], 1 ≤ i < n.

Now we are given an integer x, and we would like to find out if there exists some 1 ≤ i ≤ n
such that A[i] = x.

Consider the following recursive procedure for solving this problem.
At every step, we consider given as parameters x and the vector A, and we perform the

following.
If A is empty, we announce that the number x does not belong to A.
Otherwise, we let m := b(n+ 1)/2c.
If x = A[m], we stop and announce that x belongs to A.

1



If x > A[m], we recursively apply the same procedure to x and A[m + 1 . . . n]. Here
A[m + 1 . . . n] is the vector consisting of the last n − m numbers from A. Note that this
vector has also as elements increasing integers, it is stored in the memory as a continous
sequence, and accessing any element of it takes constant time.

If x < A[m], we recursively apply the same procedure to x and A[1 . . .m − 1]. Here
A[1 . . .m− 1] is the vector consisting of the first m− 1 numbers from A.

Argue that the procedure is correct and always finishes. Define a function f(n) (where n is
the size of the vector) which represents the running time of the procedure in the worst case on
a vector of size n and some x satisfying the assumptions, and determine f(n) asymptotically.

Exercise 3.
Show by example that if we don’t assume the triangle inequality for the weight function,

then the tour found by the Tree Shortcut Algorithm can be longer than 1000 times the
optimum tour.

Exercise 4.
The following algorithm, called Cut(G), creates a partition of the vertex set of the input

graph G.
The algorithm starts by setting A = V (G) = {v1, . . . , vn} and B = ∅. Then it iterates

the following. One by one for each vertex it checks whether its degree into its own part is
greater than to the other part. That is, if vi ∈ A for example, then the algorithm checks
whether dA(vi) > dB(vi).

1 If it is so, then Cut(G) moves vi over from part A to part B.
Otherwise it does nothing (that is, it goes on to check the next vertex). When the degree
of each vertex to its own part is not larger than its degree to the other part, then Cut(G)
outputs the sets A and B.

(a) Prove that Cut(G) terminates in finite time, and at the end the two sets A and B are
disjoint. Argue that the running time of the algorithm is O(mn), where m is the number of
edges of G.

(b) The Max-Cut problem is the following: Given a graph G, find a partition of V (G)
into A and B such that e(A,B) (the number of edges with one endpoint in A and the other in
B) is as large as possible. Explain why the above algorithm is a 1/2-approximation algorithm
for the Max-Cut problem. (That is, the output of the algorithm is always at least 1/2 of
the optimal solution.)

Exercise 5.
Let G be a graph. Recall that α(G) denotes the size of largest independent set in G.

A set L ⊆ E(G) of edges is called an edge cover if every vertex of G is an endpoint of
some member of L. Let β′(G) denote the minimum size of an edge cover of G. Prove that
β′(G) ≥ α(G).

1If G is any graph, S ⊆ V (G) and x ∈ V (G), we shall denote by dS(x) the number of vertices in S
adjacent to x in G.

2


