Exercise Sheet 12

You should try to solve and write up all the exercises. You are welcome to submit at most two neatly written exercises each week. You are encouraged to submit in pairs, but don't forget to mark the name of the scriber.

Exercise 1.

Let A be a real matrix with m rows and n columns, and let $\mathbf{b} \in \mathbb{R}^{m}$ be a vector. Prove that the following two variants of the Farkas lemma are equivalent.
(i) The system $A \mathbf{x}=\mathbf{b}$ has a nonnegative solution if and only if every $\mathbf{y} \in \mathbb{R}^{m}$ with $\mathbf{y}^{T} A \geq \mathbf{0}^{T}$ also satisfies $\mathbf{y}^{T} \mathbf{b} \geq 0$.
(ii) The system $A \mathbf{x} \leq \mathbf{b}$ has a nonnegative solution if and only if every nonnegative $\mathbf{y} \in \mathbb{R}^{m}$ with $\mathbf{y}^{T} A \geq \mathbf{0}^{T}$ also satisfies $\mathbf{y}^{T} \mathbf{b} \geq 0$.

Exercise 2.

Let $A \in \mathbb{R}^{m \times n}, \mathbf{b} \in \mathbb{R}^{m}$ and $\mathbf{c} \in \mathbb{R}^{n}$. Let $\mathbf{x}^{*} \in \mathbb{R}^{n}$ be a feasible solution of the following linear program:

$$
\begin{aligned}
& \operatorname{maximize} \mathbf{c}^{T} \mathbf{x} \\
& \text { subject to } A \mathbf{x} \leq \mathbf{b} \\
& \quad \mathbf{x} \geq \mathbf{0}
\end{aligned}
$$

and let $\mathbf{y}^{*} \in \mathbb{R}^{m}$ be a feasible solution of its dual:

$$
\begin{gathered}
\operatorname{minimize} \mathbf{b}^{T} \mathbf{y} \\
\text { subject to } A^{T} \mathbf{y} \geq \mathbf{c} \\
\mathbf{y} \geq \mathbf{0}
\end{gathered}
$$

Prove that the following two claims are equivalent (this is known as complementary slackness):
(i) \mathbf{x}^{*} is an optimal solution for (P) and \mathbf{y}^{*} is an optimal solution for (D).
(ii) For every $1 \leq i \leq m$, if \mathbf{x}^{*} does not satisfy the i-constraint of (P) with equality then $\mathbf{y}_{i}^{*}=0$, and similarly for any $1 \leq j \leq n$, if \mathbf{y}^{*} does not satisfy the j-constraint of (D) with equality then $\mathbf{x}_{j}^{*}=0$.

Exercise 3.

State the dual problem D_{i} for the initial problem P_{i} where 1. $\left(P_{1}\right)$

$$
\begin{aligned}
\operatorname{maximize} & z=2 x_{1}+3 x_{2}-x_{3}+x_{4} \\
\text { subject to } & x_{2}-2 x_{3} \\
& \leq-1 \\
x_{1}+x_{2}+x_{3}-x_{4} & \leq 0 \\
x_{1}-x_{2}-2 x_{3} & \leq 5 \\
x_{2}-x_{3}-x_{4} & \leq-2 \\
x_{1}, \ldots, x_{4} & \geq 0 .
\end{aligned}
$$

2. $\left(P_{2}\right)$

$$
\begin{aligned}
\operatorname{maximize} & z=x_{1}+x_{2}-x_{3}+x_{4}-5 x_{5} \\
\text { subject to } & x_{i}-x_{i+1} \\
& \leq 0,1 \leq i \leq 4 \\
x_{5}-x_{1} & \geq 2 \\
x_{1}+x_{2}+x_{3}+x_{4}+x_{5} & =-3 \\
x_{1}, \ldots, x_{5} & \leq 0 .
\end{aligned}
$$

