Exercise Sheet 13

You should try to solve and write up all the exercises. You are welcome to submit at most two neatly written exercises each week. You are encouraged to submit in pairs, but don't forget to mark the name of the scriber.

Exercise 1.

If G is a directed graph with n vertices and m arcs, we define a matrix $A(G)$ as follows. $A(G)$ is a $n \times m$-matrix with rows corresponding to the vertices of G, and columns corresponding to the arcs of G. The entry $A(G)_{v, e}$ on row $v \in V(G)$ and column $e \in E(G)$ is 1 if the arc e starts at $v,-1$ if the arc e ends at v, and 0 otherwise.
(a). Suppose C is a directed graph those underlying undirected graph is a cycle (C need not be a directed cycle). Prove that $\operatorname{det}(A(C))$ is 0 .
(b). Prove that for any directed graph $G, A(G)$ is totally unimodular.
(c). Deduce the max-flow min-cut theorem.

Exercise 2.

Let G be a non-empty hypergraph and $0 \leq \gamma \leq 1$ real. Prove that the following two conditions are equivalent:
(i). There exists a weight function $f: V(G) \rightarrow \mathbb{R}_{\geq 0}$ satisfying $\sum_{v \in V(G)} f(v)=1$ and $\sum_{v \in e} f(v) \geq \gamma$ for all $e \in E(G)$.
(ii). For every function $g: E(G) \rightarrow \mathbb{R}_{\geq 0}$ there is a vertex $v \in V(G)$ such that $\sum_{e: v \in e} g(e) \geq \gamma \sum_{e \in E} g(e)$.
(Hint. Reduce the problem to one of the equivalent forms of the Farkas lemma.)

Exercise 3.

Let \mathcal{L} be a finite collection of congruent disks in the plane, such that any two have a point in common. Then there exists 5 points such that each disk of the collection contains at least one of these points.
(Hint. This is a problem in combinatorial geometry. To solve it, look at the set of centers of the disks. Bound the diameter of this set and then inscribe it into a square of suitable size. Now pick the 5 points in this square in such a way that any center is close to one of the points).

Exercise 4.

Let G be a graph. We define $t(G)$ as the maximum number of edge-disjoint triangles in G.
(a). Formulate an integer linear program that finds $t(G)$.
(b). By using the LP relaxation of the program at (a), describe a 3-approximation algorithm for finding the value of $t(G)$.

