## Exercise Sheet 8

## Due date: Dec 11, 12:30 PM, beginning of exercises NO LATE SUBMISSIONS!

You should try to solve and write up all the exercises. You are welcome to submit at most two neatly written exercises each week. You are encouraged to submit in pairs, but don't forget to mark the name of the scriber.

## Exercise 1.

Let $A \subseteq \mathbb{R}^{2}$ be a set of points in the plane. An annulus (ring) is the region between two concentric circles. We define the smallest enclosing annulus of $A$ as the annulus of smallest area that contains $A$. We allow points of $A$ to lie on any of the two circles of the annulus, as well as the two circles to be identical. For example, if $A$ lies on a circle, then the smallest enclosing annulus is given by two identical circles, and the area is 0 .

Show that the problem of computing the smallest enclosing annulus of $A$ can be solved by a linear program.

## Exercise 2.

a) The $n$-dimensional crosspolytope is the set $C_{n}:=\left\{x \in \mathbb{R}^{n}:\left|x_{1}\right|+\left|x_{2}\right|+\ldots+\left|x_{n}\right| \leq 1\right\}$. Thus $C_{1}=[-1,1]$ and $C_{2}$ is the parallelogram with vertices $(-1,0),(1,0),(0,1)$ and $(0,-1)$. Express $C_{n}$ as the solution set of a linear system of inequalities (meaning, a system of the form $A x \leq b$ ).
b) Let $D=\left\{x \in \mathbb{R}^{3}:\left|2 x_{1}-x_{2}+3 x_{3}+1\right|+\left|x_{2}+2 x_{3}-2\right|+\left|5 x_{1}-3 x_{3}\right| \leq 10\right.$. Express $D$ as the solution set of a linear system of inequalities.

## Exercise 3.

We generalize the concept of independence number of a graph to hypergraphs as follows. Let $G=(V, E)$ be a hypergraph. We define $\alpha(G)$ as the maximum size of a subset $S \subseteq V(G)$, such that no hyperedge of $G$ contains two vertices from $S$.
a) Formulate an integer linear program that finds the independence number of a hypergraph.
b) Formulate the LP relaxation of the integer program defined at a).
c) An automorphism of the hypergraph $G$ is a bijection $\pi: V(G) \rightarrow V(G)$ such that $e \in E(G)$ if and only if $\pi(e) \in E(G)$, for any subset $e \subseteq V(G)$. The set of all automorphisms of $G$ forms the automorphism group $\operatorname{Aut}(G)$ of $G$. $G$ is called vertex-transitive if for any $u, v \in V(G)$ there exists $\pi \in \operatorname{Aut}(G)$ such that $\pi(u)=v$.

Let $\alpha_{f}(G)$ be the solution of the linear program defined at b). Prove that for a vertextransitive hypergraph $G$ we have $\alpha_{f}(G)=|V(G)| / t$, where $t$ is the maximum size of a hyperedge in $G$.

