
Stable Matchings

Bonnie and Clyde is called an unstable pair if

• Bonnie and Clyde are currently not a couple,

• Bonnie prefers Clyde to her current partner, and

• Clyde prefers Bonnie to his current partner.

A perfect matching (of n woman and n man) is a sta-
ble matching if it yields no unstable pair.

Theorem. (Gale-Shapley, 1962) There exists a divorce-
free society. More precisely: For any preference ran-
kings of n man and n woman there is a stable mat-
ching.

Proof. Algorithmic.
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The proof of divorce-free society

Proposal Algorithm (Gale-Shapley, 1962)

Input. Preference ranking by each of n man and n

woman.

Iteration.
Each man proposes to the woman highest on his list
who has not previously rejected him.

IF each woman receives exactly one proposal, THEN

stop and report the resulting matching as stable.

ELSE

every woman receiving more than one proposal
rejects all of them except the one highest on her list.

Every woman receiving at least one proposal says
“maybe” to the most attractive proposal she received.

Iterate.

Theorem. The Proposal Algorithm produces a stable
matching.
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Recall: Vertex coloring, chromatic number

A k-coloring of a graphG is a labeling f : V (G)→ S,
where |S| = k. The labels are called colors; the verti-
ces of one color form a color class.

A k-coloring is proper if adjacent vertices have diffe-
rent labels. A graph is k-colorable if it has a proper
k-coloring.

The chromatic number is

χ(G) := min{k : G is k-colorable}.

A graph G is k-chromatic if χ(G) = k. A proper k-
coloring of a k-chromatic graph is an optimal coloring.

Proposition χ(G) ≤∆(G) + 1.

Proof. Algorithmic; Greedy coloring.
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A real-life scenario

A company with a 100 employees has six projects
running simultaneously, each having its own leader.
Each project leader wants to schedule a one hour pro-
ject meeting, but since an employee might be part of
several projects and each project member should be
present at each relevant meeting, the scheduling is
problematic. Administration requests the project lea-
ders to be available between 8-10 and then tries to
schedule a conflict-free project meeting schedule by
finding a proper coloring of the conflict graph of the
projects, using the timeslots 8-9 and 9-10 as colors.

Project leaders are not so flexible to be available at
the wish of administration, they want to identify the
possible one-hour-slots themselves. One might want
to be available 8-10, the other 9-11, the third one 8-9
and 10-11, etc. This scenario, when each vertex (pro-
ject) has its own set of available colors (timeslots) is
the setting of list coloring.
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List Coloring

v ∈ V (G), L(v) a list of colors
A list coloring is a proper coloring f of G such that
f(v) ∈ L(v) for all v ∈ V (G).

G is k-choosable or k-list-colorable if every assignment
of k-element lists permits a proper coloring.

χl(G) = min{k : G is k-choosable}

Claim χl(G) ≥ χ(G)

Claim χl(G) ≤∆(G) + 1

Example: Kn, K2,2

Example: χl(K3,3) 6= χ(K3,3)

Example: χl(G)− χ(G) arbitrary large

PropositionKm,m is not k-choosable form =
(

2k−1
k

)
.

5



Recall: Line graphs and edge coloring

A k-edge-coloring of a multigraph G is a labeling f :
E(G) → S, where |S| = k. The labels are called
colors; the edges of one color form a color class. A
k-edge-coloring is proper if incident edges have diffe-
rent labels. A multigraph is k-edge-colorable if it has a
proper k-edge-coloring. The edge-chromatic number
(or chromatic index) of a loopless multigraph G is

χ′(G) := min{k : G is k-edge-colorable}.
A multigraph G is k-edge-chromatic if χ′(G) = k.

Remarks. χ′(G) = χ(L(G)), so

∆(G) ≤ ω(L(G))
≤ χ′(G) ≤ ∆(L(G)) + 1

≤ 2∆(G)− 1

Theorem. (König, 1916)
For a bipartite multigraph G, χ′(G) = ∆(G)

Theorem. (Vizing, 1964) For a simple graph G,

χ′(G) ≤∆(G) + 1.
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Edge-List Coloring

List Coloring Conjecture (1985) χ′l(G) = χ′(G)

Theorem (Kahn, 1996) χ′l(G) = χ′(G)(1 + o(1))

Proof is a difficult, probabilistic argument.

Theorem (Galvin, 1995) χ′l(B) = χ′(B) for any bi-
partite graph B.

We give the proof for B = Kn,n (was known before
as Dinitz Conjecture, 1979)

Reformulation (Dinitz Conjecture) For an n×n squa-
re array, a set of n symbols is given for each cell. Then
it is possible to select a symbol for each cell among its
symbols, such that no row or column repeats a sym-
bol.
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Kernels and list-colorings

A kernel of a digraph D is an independent set S ⊆
V (D), such that for every v ∈ V (D) \ S there is
w ∈ S, such that ~vw.

A digraph is kernel-perfect if every induced subdigraph
has a kernel.

Let f : V (G) → N be a function. A graph G is called
f -choosable if a proper coloring can be chosen from
any family of lists {L(v)}v∈V (G) provided |L(v)| ≥
f(v) for every v ∈ V (G).

Kernel-perfect digraphs and choosability:

Lemma (Bondy-Boppana-Siegel) Let D be a kernel-
perfect orientation of G. Then G is f -choosable with
f(v) = 1 + d+

D(v).
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Kernel-perfect orientation of L(Kn,n)

Theorem (Galvin, 1995) χ′l(Kn,n) = χ′(Kn,n).

Proof. Trivially, n = ∆(Kn,n) ≤ χ′(Kn,n) ≤ χ′l(Kn,n)

Claim 1. There is an orientation D of L(Kn,n) such
that for every v ∈ V (Kn,n) the restriction of D to
{vw : w ∈ N(v)} is transitive and ∆+(D) = n− 1.

Claim 2. LetD be an orientation of L(Kn,n) such that
for every v ∈ V (Kn,n) the restriction of D to {vw :

w ∈ N(v)} is transitive. Then D is kernel perfect.

Claim 1. + Claim 2. + Lemma⇒
L(Kn,n) is f -choosable with f ≡ ∆+(D) + 1 = n.
2
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Orienting L(Kn,n)

Proof of Claim 1.
M = W = {0,1,2, . . . , n− 1}

E(Kn,n) = V (L(Kn,n)) = {ij : i ∈M, j ∈W}

ij → i′j if i+ j > i′+ j (mod n)

ij → ij′ if i+ j < i+ j′ (mod n)

d+(ij) = n− 1 for every ij ∈ V (L(Kn,n))

For fixed j ∈W , incident edges are transitively orien-
ted from the edge (n− j − 1)j (the source) towards
the edge (n− j)j (the sink), going around modulo n.

For fixed i ∈ M , incident edges are transitively orien-
ted from the edge i(n− i) (the source) towards the
edge i(n− i− 1) (the sink), going around modulo n.
2
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Concluding kernel-perfectness

Proof of Claim 2.
Given an arbitrary subset S ⊆ V (D), we define ap-
propriate preference lists, such that for any stable mat-
ching K, K ∩ S is a kernel.

Man i ∈ M prefers woman j ∈ W to woman j′ ∈ W
if

ij ∈ S, ij′ ∈ S and ij ← ij′ or
ij ∈ S, ij′ /∈ S or
ij /∈ S, ij′ /∈ S and ij ← ij′

This is a preference list (a linear ordering of W ), be-
cause D restricted to {ij : j ∈W} is transitive

Woman j ∈W prefers man i ∈M to man i′ ∈M if

ij ∈ S, i′j ∈ S and ij ← i′j or

ij ∈ S, i′j /∈ S or

ij /∈ S, i′j /∈ S and ij ← i′j

This is a preference list (a linear ordering of M ), be-
cause D restricted to {ij : i ∈M} is transitive
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There goes your kernel

Proposition. K ∩ S is a kernel for L(Kn,n)[S]

Proof. K is a matching⇒ K ∩ S is independent

Suppose there is ij ∈ S\K which has no outneighbor
in K ∩ S. Let ij′, i′j ∈ K.

Then either ij′ /∈ S, or ij′ ∈ S and ij ← ij′.
In both cases i prefers j to j′.

Similarly either i′j /∈ S or i′j ∈ S and ij ← i′j.
In both cases j prefers i to i′.

Hence ij is an unstable pair, a contradiction. 2
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Recall: Four-Color Theorem (Appel-Haken, 1976)
Every planar graph is 4-colorable.
Proof: Very-very long, tedious.

Recall: Five-Color Theorem (Heawood, 1890)
Every planar graph is 5-colorable.
Proof: Proved in Discrete Math I.

Theorem. (Thomassen) Every planar graph is 5-list
colorable.

HW. There is a planar graph which is not 4-list-colorable.

Proof of Theorem:
Stronger Statement. Let G be a plane graph with an
outer face bounded by cycle C. Suppose that
- two vertices v1, v2, v1v2 ∈ E(C) are colored by two
different colors,
- the other vertices of C have 3-element lists assigned
to them and
- the internal vertices have 5-element lists assigned to
them.
Then the coloring of v1 and v2 can be extended pro-
perly to the whole G using colors from the assigned
lists for each vertex.
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Proof. W.l.o.g. every face of G is a triangle, except
maybe the outer face.

Induction on n(G). For n(G) = 3, G = K3, OK.

For n(G) > 3, there are two cases.

Case 1. There is a chord vivj of C.
Cut to two smaller graphs along the chord, color first
the piece where both v1 and v2 lie, then color the
other piece.

Case 2. C has no chord.
Designate two colors x, y ∈ L(v3) such that they dif-
fer from the color of v2. Color G − v3 by induction,
such that x and y are deleted from the lists of N(v3).
Extend the coloring to v3.


