Solutions to Exercise Sheet 7

Exercise 3. Suppose $n \geq 2$. Baranyai's Theorem guarantees $\binom{[3 n]}{3}$ can be partitioned into perfect matchings without explicitly describing these matchings. In this exercise you will give such an explicit description in the case when $p=3 n-1$ is a prime number.
(i) Consider the field \mathbb{F}_{p}, and denote by \mathbb{F}_{p}^{*} the set of invertible elements, namely $\mathbb{F}_{p}^{*}=$ $\{1,2, \ldots, p-1\}$. Define the map $\pi: \mathbb{F}_{p}^{*} \rightarrow \mathbb{F}_{p}$ by $\pi(x)=-(1+x) x^{-1}$. Show that π is injective and $\pi^{3}(x)=x$ for any $x \neq p-1$.
(ii) Add a new element u to \mathbb{F}_{p}, and extend π to $\{u, 0\}$ injectively so that $\pi^{3}(x)=x$ for all $x \in \mathbb{F}_{p} \cup\{u\}$. Show that this gives some perfect matching M_{0} in $\binom{[3 n n}{3}$.
(iii) By considering affine transformations $x \mapsto a x+b$, find another $\binom{3 n-1}{2}-1$ perfect matchings in $\binom{[3 n]}{3}$.
(iv) Show that these matchings partition $\binom{[3 n]}{3}$ into perfect matchings.

Solution:

The construction presented in this exercise is due to Thomas Beth. There are no known constructions for $k \geq 4$ and as far as I know this is the only construction known for $k=3$.
(i) Clearly π is well defined. Now if $\pi(x)=\pi(y)$ then $y+x y=x+x y$ and hence $x=y$. So π is injective. Furthermore, for $x \neq p-1$ we have

$$
\begin{aligned}
\pi(x) & =-\frac{1+x}{x} \\
\pi^{2}(x) & =-\frac{1+\pi(x)}{\pi(x)}=\frac{1-\frac{1+x}{x}}{\frac{1+x}{x}}=-\frac{1}{x+1}, \\
\pi^{3}(x) & =-\frac{1+\pi^{2}(x)}{\pi^{2}(x)}=\frac{1-\frac{1}{x+1}}{\frac{1}{x+1}}=x,
\end{aligned}
$$

and the two values $\pi(x), \pi^{2}(x)$ are well-defined. We further have $\pi(p-1)=0$.
(ii) We define $\pi(0)=u$ and $\pi(u)=p-1$.

For $x \neq 0$, the identity $\pi(x)=x$ implies $x^{2}+x+1=0$, from which we obtain $x^{3}=1$. But $p \geq 5$ so $x \neq 1$. Then the order of x in \mathbb{F}_{p}^{*} is 3 and hence by Lagrange's theorem, 3 divides $p-1=3 n-2$, which is not possible. Also, as $\pi^{3}(x)=x, \pi^{2}(x)=x$ or $\pi^{2}(x)=\pi(x)$
implies $\pi(y)=y$ for some y, which we have just shown to be impossible, so we find $x, \pi(x)$ and $\pi^{2}(x)$ are three distinct elements.

Hence π has all orbits of size 3 , and thus defines a perfect matching M_{0} on vertex set $\mathbb{F}_{p} \cup\{u\} \simeq[3 n]$, with edges represented by the orbits.
(iii) We will now define two actions on the 3-element subsets of $\mathbb{F}_{p} \cup\{u\}$.

If $a \in \mathbb{F}_{p}^{*}$ and $e \subseteq \mathbb{F}_{p} \cup\{u\}$ is any 3 -set containing points x_{1}, x_{2}, x_{3}, we define $a \cdot e$ as the set $\left\{a x_{1}, a x_{2}, a x_{3}\right\}$. This is well-defined, provided we assume $a u=u$. We furthermore define $a \cdot M_{0}$ as the collection $\left\{a \cdot e: e \in M_{0}\right\}$. Then $a \cdot M_{0}$ is also a perfect matching.

If $a \in \mathbb{F}_{p}$ and $e \subseteq \mathbb{F}_{p} \cup\{u\}$ is any 3 -set containing points x_{1}, x_{2}, x_{3}, we define $a+e$ as the set $\left\{a+x_{1}, a+x_{2}, a+x_{3}\right\}$. This is well-defined, provided we assume $a+u=u$. Then if M is any perfect matching, $a+M$ is also a perfect matching.

Now the group \mathbb{F}_{p}^{*} is cyclic. Fix a generator v and consider the sets $M_{i, j}:=\left\{v^{i} \cdot M_{0}+j\right.$: $\left.0 \leq i<\frac{p-1}{2}, 0 \leq j \leq p-1\right\}$. Then by the above $M_{i, j}$ are all perfect matchings in $\mathbb{F}_{p} \cup\{u\}$ and there are $\frac{p(p-1)}{2}=\binom{3 n-1}{2}$ of them.
(iv) To prove Baranyai's theorem it is enough to show that any 3-set appears in at most one of the above matchings. So suppose for a contradiction that some 3-set e belongs to two distinct matchings $M_{i, j}$ and $M_{k, l}, k \geq i$. Then $e=v^{i} \cdot e_{1}+j=v^{k} \cdot e_{2}+l$, for some $e_{1}, e_{2} \in M_{0}$. Hence $e_{1}=v^{k-i} \cdot e_{2}+v^{-i}(l-j)$. W.l.o.g. we may take $i=0$ and $j=0$. Consequently $e_{1}=v^{k} \cdot e_{2}+l$ with $0 \leq k<\frac{p-1}{2}$.

To simplify notation we set $a:=v^{k}, b:=l$ and assume $e_{1}=\left\{x_{1}, x_{2}, x_{3}\right\}, e_{2}=\left\{y_{1}, y_{2}, y_{3}\right\}$, with $x_{i}=a \cdot y_{i}+b, 1 \leq i \leq 3$. W.l.o.g. we assume $y_{2}=\pi\left(y_{1}\right), y_{3}=\pi^{2}\left(y_{1}\right)$.

Note that we can not have $a=1$ and $b=0$, for then $k=0$ and the two matchings are the same, a contradiction. We also can not have $a=-1$, for then $a^{2}=1$ and hence $k=\frac{p-1}{2}$, again a contradiction.

Now consider the case when $u \in e_{2}$. We assume $y_{1}=u$ (as all other cases follow by permuting indices). Then $x_{1}=u$. We also get $y_{2}=p-1, y_{3}=0$ and $x_{2}=a(p-1)+b, x_{3}=b$.

If $x_{3}=\pi^{2}\left(x_{1}\right)=0$ then $b=0$ and so $x_{2}=p-1=a(p-1)$. Then $a=1$, a contradiction.
So $x_{2}=\pi^{2}\left(x_{1}\right)=0$ and $b=x_{3}=\pi\left(x_{1}\right)=p-1$. Then $(a+1)(p-1)=0$, hence $a=-1$. But as we have seen this is not possible.

Consequently we may assume that $u \notin e_{2}$ and hence $p-1,0, u \notin e_{1} \cup e_{2}$.
By the computation done at (i) we know that $y_{2}=-\frac{1+y_{1}}{y_{1}}$ and $y_{3}=-\frac{1}{y_{1}+1}$. We see that

$$
\begin{align*}
& y_{1}-y_{2}=\frac{y_{1}^{2}+y_{1}+1}{y_{1}} \tag{1}\\
& y_{1}-y_{3}=\frac{y_{1}^{2}+y_{1}+1}{y_{1}+1} . \tag{2}
\end{align*}
$$

Consequently,

$$
\begin{aligned}
& a\left(y_{1}-y_{2}\right)=a \frac{y_{1}^{2}+y_{1}+1}{y_{1}}=x_{1}-x_{2}, \\
& a\left(y_{1}-y_{3}\right)=a \frac{y_{1}^{2}+y_{1}+1}{y_{1}+1}=x_{1}-x_{3},
\end{aligned}
$$

and therefore

$$
\begin{equation*}
a\left(y_{1}^{2}+y_{1}+1\right)=y_{1}\left(x_{1}-x_{2}\right)=\left(y_{1}+1\right)\left(x_{1}-x_{3}\right) . \tag{3}
\end{equation*}
$$

First assume $x_{2}=\pi\left(x_{1}\right), x_{3}=\pi^{2}\left(x_{1}\right)$. Then from (3) and using (1), (2) with y_{i} replaced by x_{i}, we get

$$
\frac{y_{1}}{x_{1}}=\frac{y_{1}+1}{x_{1}+1},
$$

from which we deduce that $x_{1}=y_{1}$. But then $x_{i}=y_{i}, 1 \leq i \leq 3$, and furthermore $b=0, a=$ 1 , a contradiction.

Therefore the only possibility is that $x_{2}=\pi^{2}\left(x_{1}\right), x_{3}=\pi\left(x_{1}\right)$. Again from (3) and (1), (2), we obtain

$$
\frac{y_{1}}{x_{1}+1}=\frac{y_{1}+1}{x_{1}},
$$

from which we deduce that $y_{1}=-\left(x_{1}+1\right)$. But then $y_{1}=\frac{1}{x_{2}}, y_{2}=\frac{1}{x_{3}}$ and $y_{3}=\frac{1}{x_{1}}$. We thus obtain the system of equations

$$
\left\{\begin{array}{l}
x_{1}=\frac{a}{x_{2}}+b, \\
x_{2}=\frac{a}{x_{3}}+b, \\
x_{3}=\frac{a}{x_{1}}+b .
\end{array}\right.
$$

Subtracting cyclically we get

$$
\begin{aligned}
& x_{1}-x_{2}=a \frac{x_{3}-x_{2}}{x_{2} x_{3}}, \\
& x_{2}-x_{3}=a \frac{x_{1}-x_{3}}{x_{1} x_{3}}, \\
& x_{3}-x_{1}=a \frac{x_{2}-x_{1}}{x_{1} x_{2}}
\end{aligned}
$$

Consequently,

$$
a^{3}=(-1) x_{1}^{2} x_{2}^{2} x_{3}^{2}
$$

We now use the identity $x \pi(x) \pi^{2}(x)=1$, which is true for any $x \in \mathbb{F}_{p}^{*} \backslash\{p-1\}$. Then $a^{3}=-1$, and hence $a^{6}=1$. As $a \notin\{1,-1\}$, the order of a in \mathbb{F}_{p}^{*} is 3 or 6 . Therefore by Lagrange's theorem again, 3 divides $p-1=3 n-2$, a contradiction.

This completes the proof.

