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What is set addition and why should one learn the basics of this theory?

The first question is easy to answer. The word ‘addition’ is mentioned so there must be an

ambient commutative group. The word ‘set’ is mentioned so we must add sets.

The sumset or Minkowski sum of two sets A and B in a commutative group is defined to be

A+B = {a+ b : a ∈ A, b ∈ B}.

Adding a singleton to another set is translation so we will use the standard notation

{a}+B = a+B.

The iterated sumset h-fold hA is defined recursively by

hA = (h− 1)A+ A.

The difference set naturally is

A−B = {a+ b : a ∈ A, b ∈ B}.

By kA− `A we mean the set

kA− `B = {a1 + · · ·+ ak − b1 − · · · − b` : aj ∈ A, bi ∈ B}.

The second questions is trickier. To begin to answer it, let us introduce a concept you may

actually not have heard before: that of a set of small doubling. The doubling constant of a

finite set A is the ratio

doubling constant of A :=
|A+ A|
|A|

.

One can think of the doubling constant as a measure of “additive structure”. Finite subgroups,

which are closed under addition and in general have very rich structure, have doubling one, while

a finite set A of generators of a free commutative group has maximum doubling

(
|A|+ 1

2

)
.
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The doubling constant also allows one to study questions that are otherwise almost meaningless.

For example, given a finite non-empty set A in a commutative group, what can be said about

the cardinality of A+ A+ A? Well, not much. The bounds

|A| ≤ |A+ A+ A| ≤
(
|A|+ 2

3

)
are easy to prove and sharp: the lower bound is attained when A is a subgroup and the upper

bound when A is a et of generators of free commutative group.

Once a condition on the doubling constant is inserted, the question becomes more precise, more

difficult to answer and also more useful. The archetypical question we will study in the first

couple of days is as follows.

How large can |A+ A+ A| be, when |A+ A| ≤ α|A|?

Later on in the Block Course you will see a rather precise characterisation of sets of small

doubling. This is a celebrated theorem that has influenced additive number theory in the 21st

century considerably. As you will see, many of the basic techniques and results we will learn

this week are featured in the study of sets of small doubling.

They also appear in many famous results of famous mathematicians: Ruzsa’s proof of Freiman’s

theorem, Gowers’ proof of Szemerédi’s theorem, Bourgain’s contribution to the Kakeya problem,

the Bourgain-Katz-Tao sum-product theorem for finite fields and Helfgott’s result about growth

and generation in SL2(Z/pZ).

Moreover, there are sound educational reasons for studying this subject. Many particularly

useful combinatorial techniques are applied: double-counting, working with extreme quantities,

simple probabilistic reasoning and the Cauchy-Schartz inequality. I hope that in this first week

you will see how one can do a lot by using very little.

Acknowledgement. In preparing these handouts, I relied on various material of Ben Green,

Tim Gowers and Imre Ruzsa.
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1 Cardinality inequalities

Let us begin with a gentle exercise.

Real time exercise. For each of the following sets determine the desired quantities.

(i) A = {1, . . . , n} ⊂ Z. Find A− A.

(ii) A = {1, . . . , n} × {1, . . . , n} ⊂ Z2. Find A+ A and the doubling constant.

(iii) A = {e1, . . . , ed} ⊂ Rd. Find A+A and the doubling constant. {ei} is the standard basis.

Solution.

From now on all sets are finite, non-empty subsets of a commutative group

Our first topic is to study what the doubling constant of a finite set tells us about the cardinality

of sum-and-difference sets like the ones defined above. We begin with a remarkable inequality

of Ruzsa.

Lemma 1.1 (Ruzsa’s triangle inequality). Let X, Y, Z be finite non-empty sets in a commuta-

tive group. Then

|X||Y − Z| ≤ |Y −X||X − Z|.

Sketch of proof.
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Corollary 1.2 (From sums to differences). Let α ∈ R and A be a finite no-empty set in a

commutative group. Suppose that |A+ A| ≤ α|A|. Then |A− A| ≤ α2|A|.

Proof.

This simple lemma is a remarkable result: it is easy to state, easy to prove, essentially sharp

and with many applications!

The exponent of α is sharp. There are examples of arbitrarily large values of α where |A+A| =

α|A| and |A − A| ≥ c
α2√

log(α)
|A|, for some absolute constant c. Absolute means a genuine

constant: independent of A (and hence of α).

Application 1.3 (From three to many summands). Let β ∈ R and A be a finite no-empty set

in a commutative group. Suppose that |A+ A− A| ≤ β|A|. Then |A+ A+ A+ A| ≤ β2|A|.

Proof.

Bounds on |A± A± A| imply bounds on |kA− `A|

Real time exercise. Let α ∈ R and A be a finite no-empty set in a commutative group.

Suppose that |A+ A| ≤ α|A|. What bound can you put on |A+ A+ A|?

Solution.
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Lemma 1.4 (From two to many summands). Let A,B be finite non-empty sets in a commuta-

tive group. Let ∅ 6= X ⊆ A be a non-empty subset of A that minimises the quantity |Z+B|/|Z|
over all non-empty subsets of A. Then for all non-empty sets C in the ambient group

|X||X +B + C| ≤ |X +B||X + C|.

Proof.
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At the heart of the proof of the lemma lies submodularity : for any two sets S and T we have

|X + (S ∪ T )|+ |X + (S ∩ T )| ≤ |X + S|+ |X + T |.

To verify the above inequality note

|X+S|+ |X+T | = |(X+S)∪(X+T )|+ |(X+S)∩(X+T )| ≥ |X+(S∪T )|+ |X+(S∩T )|.

It is noteworthy that the Cauchy–Davenport and Kneser inequalities, which offer basic lower

bounds on the cardinality of sumsets, are also related to submodularity.

Theorem 1.5 (Plünnecke’s inequality). Let α ∈ R and A and B be finite non-empty sets in a

commutative group. Suppose that |A+B| ≤ α|A|. There exists a non-empty subset ∅ 6= X ⊆ A

such that for all positive integers h

|X + hB| ≤ αh|X|.

In particular, if |A+ A| ≤ α|A|, then |hA| ≤ αh|A|.

Proof.

Remarks. In general it is not possible to replace X by the whole of A. Note the order of the

quantifiers: there is an X that works for all h.
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Theorem 1.6 (The Plünnecke–Ruzsa inequalities). Let α ∈ R, k and ` be positive integers,

and A be a finite non-empty set in a commutative group. Suppose that |A+ A| ≤ α|A|. Then

|kA− `A| ≤ αk+`|A|.

Proof.

Bounds on |A± A| imply bounds on |kA− `A|

Lemma 1.7 (Ruzsa’s twin to the triangle inequality). Let A,B,C be finite non-empty sets in

a commutative group. Then

|A||B + C| ≤ |A+B||A+ C|.

Proof.

Lemma 1.8 (Another cardinality inequality of Ruzsa). Let A,B,C be finite non-empty sets in

a commutative group. Then

|A+B + C|2 ≤ |A+B||B + C||C + A|.

No proof given here. Note that the above inequality bounds the whole of |A+B +C| and not

just |X +B + C| for some suitably chosen X.

Let us compare the range of α for which the bound above beats that of Plünnecke’s inequality.

Setting A = B = C yields |A+A+A| ≤ α3/2|A|3/2. This is superior to α3|A| when α ≥ |A|1/3.
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2 The power trick

A very natural question is to ponder what happens when we add different sets to A. As one

may expect the outlook does not change much.

Theorem 2.1 (Ruzsa’s Plünnecke–type inequality for different summands). Let h be a positive

integer and A,B1, . . . , Bh be finite non-empty sets in a commutative group. Suppose that |A+

Bi| ≤ α|A| for all i = 1, . . . , h. Then

|B1 + · · ·+Bh| ≤ αh|X|.

Proof.
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A few remarks. Ruzsa in fact showed that there exists a nonempty subset ∅ 6= Y ⊆ A such

that |Y +B1 +B2| ≤ α2|X|.

It is worth comparing Ruzsa’s bound with that given by Lemma 1.4. Setting B = B1 and

C = B2 in the lemma yields a non-empty ∅ 6= X ⊆ A such that

|X +B1 +B2| ≤
|X +B1|
|X|

|X +B2| ≤
|A+B1|
|A|

|X +B2| ≤ α|X +B2|.

No information is known about |X+B2|, so we bound it by |A+B2| ≤ α|A|. Putting everything

together gives

|X +B1 +B2| ≤ α2|A|.

While this is a strictly speaking worse bound than that given by Ruzsa. In practice, however,

the difference between having |X| and |A| on the right side is not important.

The careful reader will have noted that we in fact gave a simpler proof of the lemma.
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3 Covering lemmas

So far have seen that if |A+ B| is “small” compared to |A|, then we can say something about

the cardinality of higher sum-and-difference sets.

Now want to do a little more: starting from the condition that |A+B| is “small”, we want to

cover B by “few translates of A”. What does cover a set by translates of another set mean?

Definition. Let A and B be sets in a commutative group. B is covered by k translates of A

if there exist elements s1, . . . , sk in the ambient group such that

B ⊆
k⋃

i=1

(si + A) or equivalently B ⊆ S + A, where S = {s1, . . . , sk}.

Real time exercise. For each of the following you are given two sets A and B. Find a set S

of least cardinality such that B ⊆ S + A.

(i) A = {1, . . . n} and B = {1, . . . , n+ 1}.

(ii) A = {1, . . . n} × {0} and B = {1, . . . , n} × {1, . . . , n}.

(iii) A = {1, . . . n} and B = {n2, 2n2, . . . , n3}.

Let’s see what is going on. Set α = |A+B|/|A|.

(i) α = 2 and we needed 2 translates.

(ii) α is about 2n and we needed n translates.

(iii) α is about n and we needed n translates.

Your conjecture is:
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Consider now one more example.

(iv) A is a random subset of {1, . . . , n} and B = {1, . . . , n}.

What is a random subset of {1, . . . , n}? For each i = 1, . . . , n flip a coin; if you get H put i in

A and if you get T do not put i in A. Formally: each integer between 1 and n is included in A

with uniform probability 1/2 independent of all the others.

In this case α is about 4:

An exercise in probabilistic arguments shows that B cannot be covered by fewer than log(n)

translates of A.

Note however, that A− A is very likely to include {−dn/3e, . . . , dn/3e}:

So B can be covered by α translates of A.

Difference sets are nice sets – they have few holes

Lemma 3.1 (Ruzsa’s covering lemma). Let α ∈ R and A,B be finite non-empty sets in a

commutative group. Suppose that |A+B| ≤ α|A|. Then B ⊆ S +A−A where S ⊆ B satisfies

|S| ≤ bαc.

Proof.
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