
Application 3.2 (Ruzsa). Let α ∈ R and A be a finite non-empty set in a commutative group.

Suppose that |A+ A| ≤ α|A|. Then for all positive integers h ≥ 2

|hA− A| ≤
(
α4 + h− 2

h− 1

)
α2|A|.

Proof.

Later on in the course a more efficient covering lemma of Chang.

Lemma 3.3 (Chang’s covering lemma). Let α, β ∈ R and A,B be finite non-empty sets in a

commutative group. Suppose that |A+B| ≤ β|B| and |A+ A| ≤ α|A|. Then there exists

t ≤ b(1 + log2(αβ))c

and finite subsets S1, . . . , St ⊆ A of cardinality at most b2αc such that A can be covered as

follows

A ⊆ B −B + St + (St−1 − St−1) + · · ·+ (S1 − S1).
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Remark. One can add 0 to St to get the more symmetric form

A ⊆ B −B + (St − St) + (St−1 − St−1) + · · ·+ (S1 − S1).

As we will see the proof gives |St| < 2α and so |St ∪ {0}| ≤ 2α. Note, however, that it is no

longer necessarliy the case that At ∪{0} ⊆ A. Under very mild assumption on α and β we also

get t ≤ 2α log(αβ).

Proof of Lemma 3.3.
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What if we want to cover B by just translates of A? We succeed, but at a cost.

Lemma 3.4 (Covering by translates of the set). Let α ∈ R and A,B be finite non-empty sets

in a commutative group. Suppose that |A−B| ≤ α|A|. Then a set S ⊆ B −A of cardinality at

most bα log(|B|)c such that B ⊆ S + A.

Remarks. The example with the random subset found at the top of p.11 (the last page) of

the first handout suggests that the bound on the number of necessary translates is sharp. The

log(|A|) factor can in general make a huge difference. However, if we take cardinalities, then

the power trick allows us to drop this additional factor. So in some circumstances this last

covering lemma turns out to be the most efficient.

There are other similar covering lemmas. For example if |A + B| ≤ α|A| then one can find

S ⊆ B − A of cardinality O(log(|A|)α) such that B ⊆ S + A. The proofs of such results use

additive energy and are not covered here.

The proof of the lemma is postponed until Section 5.
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4 Freiman isomorphisms

Combinatorics is not enough to get a strong version of Freiman’s theorem. One needs to be

able to perform Fourier analysis on Zn := Z/nZ, the integers modulo n.

For technical reasons it is often much better to do Fourier analysis on Zn rather than Z. It

is even more advantageous to do Fourier analysis on the characteristic function of a set whose

relative density in Zn is not too small.

With this in mind we set a goal: start with a finite set A ⊂ Z and produce a “model” B for A.

B will be a “somewhat dense” subset of Zn for some n and crucially “encode all the additive

structure of A”.

Have to wait a week or two to see why this is a sound strategy. At this stage we only introduce

one important notion and prove one important result.

Let us begin with a definition due to Freiman, which captures in a concise way the phrase “B

encodes all the additive structure of A”.

Definition. Let k ≥ 2 be a positive integer and A a subset of a commutative group. A

map φ : A 7→ H from A to a commutative group H is a k-Freiman homomorphism if for all

x1, . . . , x2k ∈ A, the condition

x1 + · · ·+ xk = xk+1 + · · ·+ x2k

implies that

φ(x1) + · · ·+ φ(xk) = φ(xk+1) + · · ·+ φ(x2k).

φ is a k-Freiman isomorphism if it is an injection and the condition

x1 + · · ·+ xk = xk+1 + · · ·+ x2k

is equivalent to

φ(x1) + · · ·+ φ(xk) = φ(xk+1) + · · ·+ φ(x2k).

When no subscript appears, we assume k = 2.

We say A is k-Freiman isomorphic to φ(A).

Remark. A Freiman homomorphism is a map with domain A.

A strange definition, so let us familiarise ourselves with it.
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Real time exercise. For each of the following you are given k, A, H and φ. Decide whether

φ is a freiman k-homomorphism. If it is, decide whether it is a k-Freiman isomorphism.

(i) Any k, any A, any H and φ the trivial map that maps everything to zero (in H).

(ii) Any k, A = {1, . . . , n} ⊂ Z, H = Z and φ(i) = 2i.

(iii) k = 2, A = {0, 1} ⊂ Z, H = Z2 and φ is “reduction mod 2” φ(i) = i mod 2.

(iv) Any k, any A ⊂ Rd, H = Rd and φ(v) = Av + b for some invertible d × d matrix A and

some b ∈ Rd.

Solution.
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Example 4.1. (i) Let k, n ≥ 2 be positive integers and A ⊂ Z a finite set of positive integers.

Reduction modn, φ : A 7→ Zn given by φ(i) = i mod n, is a k-Freiman homomorphism. It is a

k-Freiman isomorphism if there is no wrap-around: kmax{A} < n.

(ii) Let k ≥ 2 be a positive integer, p be a prime, 0 6= q ∈ Zp and A ⊆ Zp a set of residues.

Multiplication by q is a k-Freiman isomorphism, φ : A 7→ Zp given by φ(i) = qi mod p.

(iii) Let k ≥ 2 be positive integer, p be a prime and A ⊆ Zn a finite set of residues. Mapping

x ∈ Zn to the unique residue in {0, . . . , n − 1} is a k-Freiman isomorphism provided that

A ⊆ Ij = ( (j−1)n
k

, jn
k

]. φ : A 7→ Z defined by φ(x) = x.

Proof. In principle, we must establish two properties: φ is an injection and

x1 + · · ·+ xk = xk+1 + · · ·+ x2k ⇐⇒ φ(x1) + · · ·+ φ(xk) = φ(xk+1) + · · ·+ φ(x2k).

In fact must only check the if and only if statement!

Injectivity of φ follows from ⇐= by taking x1 = · · · = xk = x and xk+1 = · · · = x2k = y:

If φ(x) = φ(y), then kφ(x) = kφ(y) so kx = ky. When the ambient group is Z of Zp, “k is

cancelled” and so we get x = y.

Only show k = 2 here.
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Proposition 4.2 (Ruzsa). Let A ⊂ Z be a finite non-empty set of integers and α ∈ R. Suppose

that |A+A| ≤ α|A|. Let k ≥ 2 be a positive integer and m > α2k|A| be another positive integer.

There exists a subset A′ ⊆ A of cardinality at least |A|/k that is k-Freiman isomorphic to a

subset of Zm.

Proof.
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Theorem 4.3 (Green-Ruzsa). Let A be a finite non-empty set in a commutative group and

α ∈ R. Suppose that |A + A| ≤ α|A|. Then for all k ≥ 2 there exists a group G of cardinality

at most C|A| such that A is k-Freiman isomorphic to a subset of G.

C depends on k and α and may be taken to be C = (10kα)10α
2
.
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5 Representations and additive energy

The topic now becomes more tangible. Let A and B be finite non-empty sets in a commutative

group. We study the number of representations of an element x in the ambient group as a sum

a+ b with a ∈ A and b ∈ B.

It turns out there are a few equivalent ways to define this quantity.

rA+B(x) = # representations of x as a sum in A+B

= |{(a, b) ∈ A×B : x = a+ b}|

= |(x− A) ∩B|

= |A ∩ (x−B)|.

Note that rA+B(x) ≤ min{|A|, |B|}.

rA+B is supported on A+B – the set of x where rA+B(x) 6= 0 is A+B.

Real time exercise. (i) Let A = B = Zp. Find rA+B(x), for all x in the support of rA+A.

(ii) Let A = Zp × {0} and B = {0} × {e1 . . . , ed} in Zp × Zd. Find rA+B(x), for all x in the

support of rA+B.

Solution.

Let us now compute the sum of rA+B(x) over all x in the ambient group.∑
x

rA+B(x) =
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Definition. Let A and B be finite non-empty sets in a commutative group. Their additive

energy is

E(A,B) =
∑

x∈A+B

rA+B(x)2.

Let us now see some of the basic properties of the additive energy.

Lemma 5.1 (Cauchy–Schwarz lower bound). Let A and B be finite non-empty sets in a com-

mutative group. Then

E(A,B) ≥ |A|
2|B|2

|A+B|
.

In particular, if |A+B| ≤ α|A|, then E(A,B) ≥ |A|B|
2

α
.

Proof.
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