
7 The Szemerédi–Trotter theorem

In an abrupt change of topic we now move to combinatorial geometry.

We wish to derive sharp estimates on the number of incidences between a finite set of lines and

a finite set of points in the plane R2. More on this later on.

It turns out that in the proof we will need the notion of a drawing of a graph and of the crossing

number of a graph.

Definition. Let be G a finite graph. A drawing is a map that takes vertices to points of R2

and edges to curves (smooth functions from [0, 1] 7→ R2) which start and end at the images of

their endpoint-vertices.

Example. LetG = (V,E) with V = {1, 2, 3, 4, 5} and E = {{1, 2}, {2, 4}, {2, 5}, {3, 4}, {4, 5}} .
Give two genuinely different drawings.

Definition. Let be G a finite graph. The crossing number of G is the least number of crossings

in any drawing of G on the plane (the number of points where a pair of edges intersect, excluding

intersections at vertices).

Let us consider G with vertex set V = {1, 2, 3, 4} and edge set E = {{1, 2}, {3, 4}}.

cr(G) = .

Real time exercise. For each of the following cycles determine the crossing number.

(i) C3 with vertex set V = {1, 2, 3} and edge set E = {{1, 2}, {2, 3}, {3, 1}}.

(ii) C4 with vertex set V = {1, 2, 3, 4} and edge set E = {{1, 2}, {2, 3}, {3, 4}, {4, 1}}.
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Let us now quickly cover some facts about the so-called planar graphs.

Definition. A graph is called planar if its crossing number is zero.

For example, the 5-cycle C5 is a planar graph, yet the complete graph on 5 vertices K5 is not.

When a graph is planar, one can talk about its faces.

A face of a finite planar graph with at least three vertices is a connected region of the subset

of the plane resulting from removing a drawing of the graph.

In the examples we saw above the faces are:

A word of warning: an intuitive definition of the word ‘face’ result in one fewer face than the

definition. The definition forces a triangle to have two faces. This is true in general. All finite

planar graphs have an unbounded face, which comes from the unbounded component.

Euler proved that for finite connected planar graphs.

|F | − |E|+ |V | = 2.

Here |F | is the number of faces (and as usual |E| the number of edges and |V | the number of

vertices).

Let us deduce an upper bound on the number of edges in a finite planar graph, which will be

useful later on. The controversial faces will not appear.

Lemma 7.1. Let G = (V,E) be a finite planar graph. Then |E| < 3|V |.

Proof.
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Corollary 7.2. Let G = (V,E) be a finite graph. Then |E| < 3|V |+ cr(G).

Proof.

We now prove a lower bound on the number of crossings.

Lemma 7.3 (Ajtai–Chvátal–Newborn–Szemerédi, Leighton). Let G = (V,E) be a finite graph.

Suppose |E| ≥ 4|V |. Then

cr(G) ≥ |E|3

64|V |2
.

Proof.

Remark. The bound is attained up to a constant on Kn, the complete graph on n vertices.

We use this inequality to establish an upper bound on the number of point-line incidences.

Definition. Let P be a finite set of points and L be a finite set of lines on the plane R2. The

number of point-line incidences is

I(P,L) = |{(p, `) : p ∈ P, ` ∈ L, p ∈ `}|.

Examples.
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Theorem 7.4 (Szemerédi–Trotter). Let P be a finite set of points and L be a finite set of lines

on the plane R2. Then number of point-line incidences is at ost

I(P,L) ≤ 4(|L|2/3|P |2/3 + |L|+ |P |).

Proof by Székely.

Remark. All three terms are necessary.
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The Szemrédi–Trotter theorem has plenty of applications in unexpected places. The most

spectacular has to be that of Elekes on the sum-product problem of Erdős.

Conjecture. Let A ⊂ R be a finite set of real numbers. Then

max{|A · A|, |A+ A|} � |A|2−ε for all ε > 0.

Remark. The ε is necessary. For example when A = {1, . . . , n}, then |A·A| � |A|2/ log log(n).

This is a non-trivial statement. It can be deduced by applying Chebyshev’s inequality to the

function ω(i) that counts the number of distinct prime factors of the positive integer i. A result

of Erdős and Kac states that ω(n) (viewed as a random variable under the uniform distribution

on {1, . . . , n}) has asymptotic mean log log(n) and asymptotic variance σ2 = log log(n).

Theorem 7.5 (Elekes). Let A ⊂ R be a finite set of real numbers. Then

|A · A| |A+ A| ≥ |A|
5/2

16
.

In particular

max{|A · A|, |A+ A|} ≥ |A|
5/4

4
.

Proof.
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