Problems for Week I

Note: Starred exercises are additional, in the sense that they are not as central to the course. They are usually longer, though not necessarily harder than the rest.

Problem 1. Give a rigorous proof of Ruzsa's triangle inequality: $|A||B-C| \leq |B-A||A-C|$.

Problem 2. Another proof of Ruzsa's triangle inequality.

Recall that the *convolution* of two functions f and g (with discrete support) is defined as

$$f * g(x) = \sum_{z} f(z)g(x - z).$$

Prove the triangle inequality by comparing a lower and an upper bound for the quantity

$$Q = \sum_{v \in B - C} 1_{B - A} * 1_{A - C}(v).$$

As usual, 1_S is the *characteristic function* of a set S defined as $f(x) = \begin{cases} 1, & x \in S \\ 0, & x \notin S \end{cases}$.

Problem 3*. An explanation of the term 'triangle inequality'. Let X, Y and Z be finite non-empty sets in a group. Let

$$d(X,Y) = \log\left(\frac{|X-Y|}{|X|^{1/2}|Y|^{1/2}}\right).$$

Prove that $d(X, Z) \leq d(X, Y) + d(Y, Z)$. Is d a metric (on the set of finite non-empty subsets of the commutative group)?

Problem 4. Let $n \geq 4$ be a positive integer.

- (i) Suppose that $|A + A A| \le \alpha |A|$. Find an upper bound for the cardinality of the *n*-fold sumset $A + A A + \cdots + (-1)^n A$ in terms of α and |A|.
- (ii) Suppose that $|A + A + A| \le \beta |A|$. Find an upper bound for the cardinality of the *n*-fold sumset $A + A A + \cdots + (-1)^n A$ in terms of β and |A|.

Problem 5. Let A and B be finite non-empty sets of a commutative group. We have seen the

importance of the subset X that minimises the quantity $\frac{|Z+B|}{|Z|}$ over all non-empty subsets Z of A. In each of the following three examples identify X.

- (i) A is a subgroup and B is any non-empty set of the ambient group.
- (ii) A = B is an arithmetic progression in \mathbb{Z} .
- (iii) A=B is the subset of \mathbb{Z}^3 that consists of the union of the "discrete cube" $\{(x,y,z):1\leq x,y,z\leq n\}$ with three "elongated edges" $\{(x,0,0):1\leq x\leq n^2\}$, $\{(0,y,0):1\leq y\leq n^2\}$ and $\{(0,0,z):1\leq z\leq n^2\}$.

Problem 6*. Let A, B and C be finite non-empty sets of a commutative group and X the minimiser associated with A and B described in the problem above. Here is a proof of the inequality $|X| |X + B + C| \le |X + B| |X + C|$ that was given by Reiher.

- (i) Use Hall's marriage theorem a.k.a. König's theorem to prove the existence of a bijection ϕ from $X \times (X + B)$ to itself with the special property that if $\phi(r, s) = (x, y)$, then $y r \in B$.
- (ii) Use ϕ to construct an injection $\theta: X \times (X+B+C) \mapsto (X+B) \times (X+C)$ as follows:
- order the elements of C in some way;
- write each $s \in X + B + C$ as the sum t + c, where $t \in X + B$ and $c \in C$ is minimal in the chosen order;
- map $(a, s) \in X \times (X + B + C)$ to (y, x + c), where s = t + c as above and $(x, y) = \phi^{-1}(a, t)$.

Problem 7*. Can you prove the inequality $|A||B+C| \le |A+B||A+C|$ in a similar way to the triangle inequality?

Problem 8. Plünnecke's inequality for a large subset. Let $\varepsilon > 0$. We prove that there exists $\emptyset \neq Y \subseteq A$ of cardinality at least $(1 - \varepsilon)|A|$ such that $|Y + hA| \leq (\alpha/\varepsilon)^h |A|$. Fill in the details in the following steps.

Apply Plünnecke's inequality to the pair (A, A) to find $\emptyset \neq X_1 \subseteq A$ such that $|X_1 + hA| \leq \alpha^h |X_1|$. If X_1 is large enough we are done.

Otherwise apply Plünnecke's inequality to the pair $(A \setminus X_1, A)$ to find $\emptyset \neq X_2 \subseteq A \setminus X_1$ such that $|X_1 + hA|$ is bounded in a reasonable way (your job is to find a reasonable bound).

Keep going this way until $|X_1| + \cdots + |X_k| > (1 - \varepsilon)|A|$.

One cannot take Y = A in general. Can you find an example?

Problem 9. Plünnecke's inequality and one of the many inequalities of Ruzsa we have seen imply that if $|A + A| \le \alpha |A|$, then

$$|A + A + A| \le \min\{\alpha^3 |A|, \alpha^{3/2} |A|^{3/2}\}.$$

Modify the example given in Problem 5 (iii) to show that the bound is up to constant sharp (for infinitely many values of α that form an unbounded sequence).

Problem 10. A covering lemma of Green and Ruzsa. Let A and B be finite non-empty sets in a commutative group. Suppose that $|A + B| \le \alpha |A|$. Prove there exists a set S of cardinality at most 2α such that every element $b \in B$ can be expressed in at least |A|/2 ways as a sum b = s + a - a' where $a, a' \in A$ and $s \in S$, i.e. prove that for all $b \in B$

$$|\{(s, a, a') \in S \times A \times A : b = s + a - a'\}| \ge \frac{|A|}{2}.$$

Problem 11*. For those that like the probabilistic method. We prove that with high probability $\log(n)$ translates of a random subset of $\{1, \ldots, n\}$ are not adequate to cover the entire set.

A random subset of $\{1, \ldots, n\}$ is formed by including each element uniformly with probability 1/2 independently of all the others. Let A be such a random set and $S \subseteq \{1, \ldots, n\}$ be a set of cardinality $\log(n)$.

- (i) Find the probability that $i \in \{1, ..., n\}$ belongs to S + A.
- (ii) Deduce an upper bound for the probability that S+A covers $\{1,\ldots,n\}$ i.e., that $\{1,\ldots,n\}\subseteq A+S$.
- (iii) Use a so-called union bound to prove that with probability 1 o(1) there is no set S of cardinality $\log(n)$ such that S + A covers $\{1, \ldots, n\}$.

We have therefore established that with high probability, $\log(n)$ translates of a random set do not cover $\{1, \ldots, n\}$. This is an existence proof. We know that most subsets of $\{1, \ldots, n\}$ have this property, but our proof does not provide us with an explicit example.

Problem 12*. Use Problem 11 (as a black box, if necessary) to prove that for, say, all $\alpha > 2$ there exist sets A and B such that $|A + B| \le \alpha |A|$ and B cannot be covered with fewer than $c \log(|A|)\alpha$ translates of A, where c is an absolute constant.

Problem 13. Let A be finite non-empty set in a commutative group. Suppose that $|A + A| \le \alpha |A|$. Here is another proof of the bound $|A + A + A| \le \alpha^3 |A|$ in four steps:

- (i) Find an $\emptyset \neq X \subseteq A$ such that both |X + A| and |X + A + A| are "small".
- (ii) Cover A by translates of X.
- (iii) Deduce a covering for A + A + A by translates of X + A + A.
- (iv) Apply the power trick.

Problem 14. Let A, B_1 and B_2 be finite non-empty sets in a commutative group. Suppose that $|A + B_i| \le \alpha_i |A|$ for $\alpha_i \in \mathbb{Q}$. In this exercise we establish the bound

$$|B_1 + B_2| \le \alpha_1 \alpha_2 |A|.$$

We saw that if $\alpha_1 = \alpha_2 = \alpha$, then $|B_1 + B_2| \le \alpha^2 |A|$. Let us now deduce the general case from this.

Let n_1 and n_2 be positive integers such that $n_1\alpha_1 = n_2\alpha_2 \in \mathbb{Z}$. Why do such n_i exist? Work in the direct product of the ambient group with $\mathbb{Z}_{n_1} \times \mathbb{Z}_{n_2}$. Apply the above result to $A' = A \times \{0\} \times \{0\}, B'_1 = B_1 \times Z_{n_1} \times \{0\}$ and $B'_2 = B_2 \times \{0\} \times Z_{n_2}$.

Problem 15. For each of the following provide a proof or counter example.

- (i) Every Freiman homomorphism is a homomorphism between the ambient groups.
- (ii) Every homomorphism between the ambient groups is a Freiman isomorphism between a set and its image.

Problem 16. For each of the following you are given a finite set A and a positive integer k. Find a set $B \subset \mathbb{Z}$ and an explicit formula for a Freiman k-isomorphism from A to B.

- (i) $A = \{(x,y) \in \mathbb{Z}^2 : 0 \le x, y \le n-1\}$, is the discrete square of side length n and k = 2.
- (ii) $A = \{(x, y) \in \mathbb{Z}^2 : 0 \le x, y \le n 1\}$, is the discrete square of side length n and k = n.
- (ii) $A = \{(x_1, \dots, x_d) \in \mathbb{Z}^d : 0 \le x_1, \dots, x_n \le n-1\}$, is the discrete d-dimensional cube of side length n and $k = n^2$.

Problem 17. Let A and B be two sets in a commutative group that contain 0. Suppose that $\theta: A+A\mapsto B+B$ is a k-Freiman isomorphism that satisfies $\theta(0)=0$. Prove that A is (2k)-Freiman isomorphic to B.

Problem 18*. Is there a non-trivial Freiman isomorphism from the unit circle $\mathbb{T} := \mathbb{R}/\mathbb{Z}$ to a subset of \mathbb{R} that is a continuous function (on \mathbb{T})?

Problem 19. For each of the following you are given a set of integers and positive integers k. Go through the proof of Ruzsa's Freiman-isomorphism theorem and construct a k-Freiman isomorphic subset of \mathbb{Z}_p for a suitable p.

- (i) $A = \{1, 3, 5, \dots, 17\}$ and k = 2.
- (ii) $A = \{2, 3, 5, 8\}$ and k = 4.

Problem 20. For each of the following sets get an exact formula for the required quantity.

- (i) The additive energy of an arithmetic progression of length n.
- (ii) The additive energy of a Sidon set (a set where the sums x + y are distinct) of cardinality n.
- (iii) The expected value of the additive energy of an random set in $\mathbb{Z}/p\mathbb{Z}$ where each element appears with probability p.

Problem 21. We have seen that small doubling implies large additive energy and that large additive energy implies small doubling for a large subset.

Estimate the doubling constant and the additive energy of the set

$$A = \{1, \dots, n\} \cup \{n^2, n^3, \dots, n^n\}.$$

What does this example tell us?

Problem 22. The Balog-Szemerédi-Gowers theorem continues to hold when "addition takes place along the edges of a graph $G \subseteq A \times B$ ".

Let A and B be sets in a commutative group. Define $A +_G B = \{a + b : (a, b) \in G\}$.

- (i) Find $A +_G B$ when $A = B = \{1, \dots, 2n\} \subset \mathbb{Z}$ and $G = \{1, \dots, n\} \times \{1, \dots, n\} \subset \mathbb{Z}^2$.
- (ii) Prove that $E(A, B) \ge \frac{|G|^2}{|A +_G B|}$.
- (iii) Prove that if $E(A, B) \ge \frac{|A|^{3/2}|B|^{3/2}}{K}$, the there exists $G \subset A \times B$ of density at least 1/K that satisfies $|A +_G B| \le \frac{K|G|}{\sqrt{|A||B|}}$.

Problem 23. Find the exact number of point-line incidences when $P = \{1, ..., n\} \times \{1, ..., 2n^2\}$ and L is the set of lines y = ax + b where $(a, b) \in \{1, ..., n\} \times \{1, ..., n^2\}$.

What does this example show?

Problem 24. We establish the so-called Cauchy-Schartz lower bound on the number of point-line incidences. Let L be a finite collection of lines and P be a finite set of points in the plane \mathbb{R}^2 . For each $\ell \in L$ let n_ℓ denote the number of points from P that are on ℓ .

Complete each of the following steps.

- (i) Evaluate $\sum_{\ell \in L} n_{\ell}$.
- (ii) Deduce $\sum_{\ell \in L} (n_{\ell} 1)$.
- (iii) Explain why $\sum_{\ell \in L} \binom{n_{\ell}}{2} \leq \binom{|P|}{2}$ is true.
- (iv) Deduce an upper bound for $\sum_{\ell \in L} (n_{\ell} 1)^2$.
- (v) Finally prove

$$I(P, L) \le |L| + |L|^{1/2}|P|.$$

Problem 25*. Formulate and prove an analogue to the Szemerédi-Trotter theorem for the number of incidences between a finite set of points P and a finite collection of circles of equal radii C in the plane.