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What is set addition and why should one learn the basics of this theory?

The first question is easy to answer. The word ‘addition’ is mentioned so there must be an

ambient commutative group. The word ‘set’ is mentioned so we must add sets.

The sumset or Minkowski sum of two sets A and B in a commutative group is defined to be

A+B = {a+ b : a ∈ A, b ∈ B}.

Adding a singleton to another set is translation so we will use the standard notation

{a}+B = a+B.

The iterated sumset h-fold hA is defined recursively by

hA = (h− 1)A+ A.

The difference set naturally is

A−B = {a+ b : a ∈ A, b ∈ B}.

By kA− `A we mean the set

kA− `B = {a1 + · · ·+ ak − b1 − · · · − b` : aj ∈ A, bi ∈ B}.

The second questions is trickier. To begin to answer it, let us introduce a concept you may

actually not have heard before: that of a set of small doubling. The doubling constant of a

finite set A is the ratio

doubling constant of A :=
|A+ A|
|A|

.

One can think of the doubling constant as a measure of “additive structure”. Finite subgroups,

which are closed under addition and in general have very rich structure, have doubling one, while

a finite set A of generators of a free commutative group has maximum doubling

(
|A|+ 1

2

)
.
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The doubling constant also allows one to study questions that are otherwise almost meaningless.

For example, given a finite non-empty set A in a commutative group, what can be said about

the cardinality of A+ A+ A? Well, not much. The bounds

|A| ≤ |A+ A+ A| ≤
(
|A|+ 2

3

)
are easy to prove and sharp: the lower bound is attained when A is a subgroup and the upper

bound when A is a set of generators of a free commutative group.

Once a condition on the doubling constant is inserted, the question becomes more precise, more

difficult to answer and also more useful. The archetypical question we will study in the first

couple of days is as follows.

How large can |A+ A+ A| be, when |A+ A| ≤ α|A|?

Later on in the Block Course you will see a rather precise characterisation of sets of small

doubling. This celebrated theorem of Freiman has influenced additive number theory in the

21st century considerably. As you will see, many of the basic techniques and results we will

learn this week are featured in the study of sets of small doubling.

They also appear in many famous results of famous mathematicians: Ruzsa’s proof of Freiman’s

theorem, Gowers’ proof of Szemerédi’s theorem, Bourgain’s contribution to the Kakeya problem,

the Bourgain-Katz-Tao sum-product theorem for finite fields and Helfgott’s result about growth

and generation in SL2(Z/pZ).

Moreover, there are sound educational reasons for studying this subject. Many particularly

useful combinatorial techniques are applied: double-counting, working with extreme quantities,

probabilistic reasoning and the Cauchy-Schartz inequality. I hope that in this first week you

will see how one can do a lot by using very little.

Acknowledgement. In preparing these handouts, I relied on various material of Ben Green,

Tim Gowers and Imre Ruzsa.

Please email corrections to g.petridis@rochester.edu
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1 Cardinality inequalities

Let us begin with a gentle exercise.

Real time exercise. For each of the following sets determine the desired quantities.

(i) A = {1, . . . , n} ⊂ Z. Find A− A.

(ii) A = {1, . . . , n} × {1, . . . , n} ⊂ Z2. Find A+ A and the doubling constant.

(iii) A = {e1, . . . , ed} ⊂ Rd. Find A+A and the doubling constant. {ei} is the standard basis.

Solution.

From now on all sets are finite, non-empty subsets of a commutative group

Our first topic is to study what the doubling constant of a finite set tells us about the cardinality

of sum-and-difference sets like the ones defined above. We begin with a remarkable inequality

of Ruzsa.

Lemma 1.1 (Ruzsa’s triangle inequality). Let X, Y, Z be finite non-empty sets in a commuta-

tive group. Then

|X||Y − Z| ≤ |Y −X||X − Z|.

Sketch of proof. We construct an injection from X × (Y − Z) 7→ (Y −X)× (X − Z).

Let (x, v) ∈ X × (Y − Z). Express v = y − z for some y ∈ Y and z ∈ Z. Then map (x, y − z)

to (y − x, x− z).

Corollary 1.2 (From sums to differences). Let α ∈ R and A be a finite no-empty set in a

commutative group. Suppose that |A+ A| ≤ α|A|. Then |A− A| ≤ α2|A|.
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Proof. The strategy is to “insert an additional A between the two copies of A” in A− A.

Set X = −A, Y = Z = A in the triangle inequality. Then |−A||A−A| ≤ |A−(−A)||(−A)−A|.
This implies |A||A− A| ≤ |A+ A|2 and so

|A− A| ≤ |A+ A|
|A|

|A+ A| ≤ α|A+ A| ≤ α2|A|.

This simple lemma is a remarkable result: it is easy to state, easy to prove, essentially sharp

and with many applications!

The exponent of α is sharp. There are examples of arbitrarily large values of α where

|A+ A| = α|A| and |A− A| ≥ c
α2√

log(α)
|A|,

for some absolute constant c. Absolute means a genuine constant: independent of A (and hence

of α).

Application 1.3 (From three to many summands). Let β ∈ R and A be a finite no-empty set

in a commutative group. Suppose that |A+ A− A| ≤ β|A|. Then |A+ A+ A+ A| ≤ β2|A|.

Proof. The strategy is to “insert an A between the two copies of A+ A” in 4A.

Set X = A, Y = A+A and Z = −(A+A) in the triangle inequality. Then |−A||A+A+A+A| ≤
|A+ A− A||A− (A+ A)|. This implies

|A+ A+ A+ A| ≤ |A+ A− A|
|A|

|A+ A− A| ≤ β2|A|.

Bounds on |A± A± A| imply bounds on |kA− `A|

Real time exercise. Let α ∈ R and A be a finite no-empty set in a commutative group.

Suppose that |A+ A| ≤ α|A|. What bound can you put on |A+ A+ A|?

Solution.
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Lemma 1.4 (From two to many summands). Let A,B be finite non-empty sets in a commuta-

tive group. Let ∅ 6= X ⊆ A be a non-empty subset of A that minimises the quantity |Z+B|/|Z|
over all non-empty subsets of A. Then for all non-empty sets C in the ambient group

|X||X +B + C| ≤ |X +B||X + C|.

Proof. For simplicity let us denote

K :=
|X +B|
|X|

= min
∅6=Z⊆A

|Z +B|
|Z|

.

A is finite so the minimum (exists and) is attained. The inequality in the statement of the

lemma now becomes

|X +B + C| ≤ K|X + C|.

To prove it, we induct on |C|.

When |C| = 1 we are done as both sides of the inequality equal |X +B|.

For |C| > 1 we pick c ∈ C and express C = C ′ ∪ {c}. We now partition X into a set T and its

relative complement X \ T , where

t ∈ T ⇐⇒ c+ t ∈ C ′ +X.

Then

|X +B + C| = |X +B + C ′|+ |(X +B + c) \ (X +B + C ′)|

≤ |X +B + C ′|+ |(X +B + c) \ (T +B + c)|

= |X +B + C ′|+ |X +B + c| − |T +B + c|

= |X +B + C ′|+ |X +B| − |T +B|.

By the induction hypothesis the first summand is at most K|X + C ′|. By the definition of K

the second summand is K|X|. By the definition of X, |T +B| ≥ K|T |. Therefore

|X +B + C| ≤ K(|X + C ′|+ |X| − |T |) = K(|X + C ′|+ |X \ T |).

This completes the proof as T is such that |X + C| = |X + C ′|+ |X \ T |.

At the heart of the proof of the lemma lies submodularity : for any two sets S and T we have

|X + (S ∪ T )|+ |X + (S ∩ T )| ≤ |X + S|+ |X + T |.
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To verify the above inequality note

|X+S|+ |X+T | = |(X+S)∪(X+T )|+ |(X+S)∩(X+T )| ≥ |X+(S∪T )|+ |X+(S∩T )|.

It is noteworthy that the Cauchy–Davenport and Kneser inequalities, which offer basic lower

bounds on the cardinality of sumsets, are also related to submodularity.

Theorem 1.5 (Plünnecke’s inequality). Let α ∈ R and A and B be finite non-empty sets in a

commutative group. Suppose that |A+B| ≤ α|A|. There exists a non-empty subset ∅ 6= X ⊆ A

such that for all positive integers h

|X + hB| ≤ αh|X|.

In particular, if |A+ A| ≤ α|A|, then |hA| ≤ αh|A|.

Proof. As in the proof of Lemma 1.4, we let X and K be such that

K :=
|X +B|
|X|

= min
∅6=Z⊆A

|Z +B|
|Z|

.

Setting Z = A yields K ≤ α.

We now induct on h.

For h = 1 note |X +B| = K|X| ≤ α|X|.

For h > 1 we set C = (h− 1)B in Lemma 1.4:

|X + hB| = |X +B + (h− 1)B| ≤ K|X + (h− 1)B| ≤ Kh|X| ≤ αh|X|.

For the second inequality we set B = A and use the fact that X is non-empty.

|hA| ≤ |X + hA| ≤ αh|X| ≤ α|A|.

Remarks. In general it is not possible to replace X by the whole of A. Note the order of the

quantifiers: there is an X that works for all h.

Theorem 1.6 (The Plünnecke–Ruzsa inequalities). Let α ∈ R, k and ` be positive integers,

and A be a finite non-empty set in a commutative group. Suppose that |A+ A| ≤ α|A|. Then

|kA− `A| ≤ αk+`|A|.
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Proof. We combine Ruzsa’s triangle inequality (Lemma 1.1) with Plünencke’s inequality The-

orem 1.5). We use the fact that the same set X works for both k and `.

|kA− `A| ≤ |X + kA||X + `A|
|X|

≤ αk|X|α`|X|
|X|

= αk+`|X|.

Bounds on |A± A| imply bounds on |kA− `A|

Lemma 1.7 (Ruzsa’s twin to the triangle inequality). Let A,B,C be finite non-empty sets in

a commutative group. Then

|A||B + C| ≤ |A+B||A+ C|.

Proof. Once again we apply Lemma 1.4, noting that X 6= ∅ and
|X +B|
|X|

≤ |A+B|
|A|

.

|A||B + C| ≤ |A||X +B + C|

≤ |A| |X +B|
|X|

|X + C|

≤ |A| |A+B|
|A|

|A+ C|

= |A+B||A+ C|.

Lemma 1.8 (Another cardinality inequality of Ruzsa). Let A,B,C be finite non-empty sets in

a commutative group. Then

|A+B + C|2 ≤ |A+B||B + C||C + A|.

No proof given here. Note that the above inequality bounds the whole of |A+B +C| and not

just |X +B + C| for some suitably chosen X.

Let us quickly compare the range of α for which the bound above beats that of Plünnecke’s

inequality. Setting A = B = C yields

|A+ A+ A| ≤ α3/2|A|3/2.

This is superior to α3|A| when |A| ≤ α3 or α ≥ |A|1/3.
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2 The power trick

A very natural question is to ponder what happens when we add different sets to A. As one

may expect the outlook does not change much.

Theorem 2.1 (Ruzsa’s Plünnecke–type inequality for different summands). Let h be a positive

integer and A,B1, . . . , Bh be finite non-empty sets in a commutative group. Suppose that |A+

Bi| ≤ α|A| for all i = 1, . . . , h. Then

|B1 + · · ·+Bh| ≤ αh|X|.

Proof. We apply Plünnecke’s inequality (Theorem 1.5) to the sets A and B1 ∪ · · · ∪Bh. Note

|A+ (B1 ∪ · · · ∪Bh)| = |(A+B1) ∪ · · · ∪ (A+Bh)| ≤ |A+B1|+ · · ·+ |A+Bh| ≤ hα|A|.

By Theorem 1.5 we get a non-empty ∅ 6= X ⊆ A such that

|X + h(B1 ∪ · · · ∪Bh)| ≤ (hα)h|X| ≤ hhαh|A|. (2.1)

Now observe

|B1 + · · ·+Bh| ≤ |X +B1 + · · ·+Bh|

≤ |X + h(B1 ∪ · · · ∪Bh)|

≤ hhαh|A|.

The second step is to find a way to remove the hh term.

To do this we use the fact that inequality (2.1) holds for all sets in any commutative group.

We work in the r-fold direct product of the ambient group and consider the r-fold Cartesian

products Ar = A× . . .× A and Br
i = Bi × . . .×Bi.

There are two key observations to be made.

(i) Cartesian products and set addition mix well together. For example,

Br
1 + · · ·+Br

h = (B1 + · · ·+Bh)
r.

(ii) Cardinality is multiplicative with respect to cartesian products. For example

|Ar +Br
i | = |(A+Bi)

r| = |A+Bi|r ≤ αr|A|r = αr|Ar|.

More informally working in the r-fold direct product results in:
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- |A+B1 + · · ·+Bh| being replaced by its rth power,

- α being replaced by its rth power,

- |A| being replaced by its rth power,

- hh remaining as it is.

Applying inequality (2.1) to the sets Ar, Br
1 . . . , B

r
h gives

|B1 + · · ·+Bh|r = |Br
1 + · · ·+Br

h| ≤ hh(αr)h|Ar| = hh(αh)r|A|r.

Taking rth roots gives

|B1 + · · ·+Bh| ≤ (hh)1/rαh|A|.

Letting r tend to infinity finishes off the proof.

A few remarks. Ruzsa in fact showed that there exists a nonempty subset ∅ 6= Y ⊆ A such

that |Y +B1 +B2| ≤ α2|X|.

It is worth comparing Ruzsa’s bound with that given by Lemma 1.4. Setting B = B1 and

C = B2 in the lemma yields a non-empty ∅ 6= X ⊆ A such that

|X +B1 +B2| ≤
|X +B1|
|X|

|X +B2| ≤
|A+B1|
|A|

|X +B2| ≤ α|X +B2|.

No information is known about |X+B2|, so we bound it by |A+B2| ≤ α|A|. Putting everything

together gives

|X +B1 +B2| ≤ α2|A|.

While this is a bound than that given by Ruzsa, in practice the difference between having |X|
and |A| on the right side is not important.

The careful reader will have noted that we in fact just gave a simpler proof of the lemma.
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3 Covering lemmas

So far have seen that if |A+ B| is “small” compared to |A|, then we can say something about

the cardinality of higher sum-and-difference sets.

Now we want to do a little more: starting from the condition that |A+B| is “small”, we want

to cover B by “few translates of A”. What does cover a set by translates of another set mean?

Definition. Let A and B be sets in a commutative group. B is covered by k translates of A

if there exist elements s1, . . . , sk in the ambient group such that

B ⊆
k⋃
i=1

(si + A) or equivalently B ⊆ S + A, where S = {s1, . . . , sk}.

Real time exercise. For each of the following you are given two sets A and B. Find a set S

of least cardinality such that B ⊆ S + A.

(i) A = {1, . . . n} and B = {1, . . . , n+ 1}.

(ii) A = {1, . . . n} × {0} and B = {1, . . . , n} × {1, . . . , n}.

(iii) A = {1, . . . n} and B = {n2, 2n2, . . . , n3}.

Let’s see what is going on. Set α = |A+B|/|A|.

(i) α = 2 and we needed 2 translates.

(ii) α is about 2n and we needed n translates.

(iii) α is about n and we needed n translates.

Your conjecture is:
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Consider now one more example.

(iv) A is a random subset of {1, . . . , n} and B = {1, . . . , n}.

What is a random subset of {1, . . . , n}? For each i = 1, . . . , n flip a coin; if you get H put i in

A and if you get T do not put i in A. Formally: each integer between 1 and n is included in A

with uniform probability 1/2 independent of all the others.

In this case α is about 4. This is because the expected value of |A| is n/2. With a little

work one can show that it is very likely that |A| is about n/2. For all subsets A we have

A+B ⊆ {2, . . . , 2n} and so |A+B| ≤ 2n, which is about 4|A| for most random sets.

An exercise in probabilistic arguments shows that B cannot be covered by fewer than log(n)

translates of A.

Note however, that A − A is very likely to include {−dn/3e, . . . , dn/3e}. There are at least

2n/3 ways to express i ∈ {−dn/3e, . . . , dn/3e} as a difference i = b− b′ with b, b′ ∈ B. So the

expected number of representations of i = a− a′ where a, a′ ∈ A is at least (1/2)22n/3 = n/6.

When n is large, it is extremely likely that all such i lie in A− A.

So B can be covered by α translates of A.

Difference sets are nice sets – they have few holes

Lemma 3.1 (Ruzsa’s covering lemma). Let α ∈ R and A,B be finite non-empty sets in a

commutative group. Suppose that |A+B| ≤ α|A|. Then B ⊆ S +A−A where S ⊆ B satisfies

|S| ≤ bαc.

Proof. The key is to select a maximal subset S ⊆ B such that the sets s + A are pairwise

disjoint for all s ∈ S. It follows that

|S||A| = |A+ S| ≤ |A+B| ≤ α|A|.

The cardinality of S is a positive integer and so |S| ≤ bαc.

Let b ∈ B. There are two possibilities.

Either b ∈ S, in which case for any a ∈ A we have b = b+ a− a ∈ S + A− A.

Or b /∈ S. By the maximality of S, this can only happen if b + A intersects some s + A.

In other words if there exists s ∈ S and a, a′ ∈ A such that b + a′ = s + a. This gives

b = S + a− a′ ∈ S + A− A, and completes the proof.
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Application 3.2 (Ruzsa). Let α ∈ R and A be a finite non-empty set in a commutative group.

Suppose that |A+ A| ≤ α|A|. Then for all positive integers h ≥ 2

|hA− A| ≤
(
α4 + h− 2

h− 1

)
α2|A|.

Proof. This is a combination of Ruzsa’s covering lemma and the Plünnecke–Ruzsa inequalities

of Theorem 1.6.

To begin we note that the Plünnecke–Ruzsa inequalities give |A+(2A−A)| = |3A−A| ≤ α4|A|.

Applying the covering lemma we get 2A− A ⊆ S + A− A for some |S| ≤ α4.

An inductive argument gives hA− A ⊆ (h− 1)S + (A− A) :

hA− A = [(h− 1)A− A] + A

⊆ [(h− 2)S + (A− A)] + A

= (h− 2)S + (2A− A)

⊆ (h− 2)S + S + A− A

= (h− 1)S + (A− A).

Therefore

|hA− A| ≤ |(h− 1)S + (A− A)| ≤ |(h− 1)S| |A− A|.

The first term in the product is bounded above by

(
|S|+ h− 2

h− 1

)
≤
(
α4 + h− 2

h− 1

)
. The second

term is at most α2|A| by Lemma 1.2, as required.

Later on in the course a covering lemma of Chang will be used, which is more efficient in

applications.

Lemma 3.3 (Chang’s covering lemma). Let α, β ∈ R and A,B be finite non-empty sets in a

commutative group. Suppose that |A+B| ≤ β|B| and |A+ A| ≤ α|A|. Then there exists

t ≤ 1 + blog2(αβ))c ≤ 2 log(αβ)

and finite subsets S1, . . . , St ⊆ A of cardinality at most 2bαc such that

A ⊆ B −B + St + (St−1 − St−1) + · · ·+ (S1 − S1).
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Remark. One can add 0 to St to get the more symmetric form

A ⊆ B −B + (St − St) + (St−1 − St−1) + · · ·+ (S1 − S1).

As we will see the proof gives |St| < 2bαc and so |St ∪ {0}| ≤ 2bαc. Note, however, that it is

no longer necessarliy the case that At ∪ {0} ⊆ A.

Proof of Lemma 3.3. For simplicity we take α to be an integer.

We construct a sequence of sets B = B1, B2, . . . , Bt of increasing cardinality as follows.

Set B1 = B. For i > 1 we check whether a subset Si ⊆ A of size 2α exists with the property

that |Si +Bi| = |Si||Bi|.

If such Si exists, we set Bi+1 = Si +Bi and proceed.

If no such Si exists, we select a maximal subset Si ⊆ A subject to |Si + Bi| = |Si||Bi|, set

Bi+1 = Si +Bi and terminate the algorithm.

Our first task is to prove that the algorithm terminates in at most b(1 + log2(αβ))e steps.

Suppose the algorithm continues at step i. Then

Bi+1 = Si +Bi = · · · = Si + · · ·+ S1 +B1 = Si + · · ·+ S1 +B. (3.1)

The Si have been chosen in such a way that

|Bi+1| = |Si| . . . |S1||B| = (2α)i|B|.

Now observe that Sj ⊆ A and so Bi+1 ⊆ iA + B. The twin to Ruzsa’s triangle inequality

(Lemma 1.7) and Plünnecke’s inequality (Theorem 1.5) gives

|iA+B| ≤ |iA+ A|
|A|

|A+B| ≤ αi+1β|B|.

Therefore

(2α)i|B| ≤ αi+1β|B|

and so i ≤ log2(αβ). Therefore the algorithm must terminate after at most 1 + log2(αβ) steps.

At this ultimate step t, the maximality of St implies that for every a ∈ A there exists s ∈ St
such that (a+Bt)∩(s+Bt) 6= ∅. Therefore, a ∈ St+Bt−Bt and consequently A ⊆ St+Bt−Bt.
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Equation (3.1) implies

A ⊆ St + (St−1−St−1) +Bt−1−Bt−1 = · · · = St + (St−1−St−1) + · · ·+ (S1−S1) +B−B,

as claimed.

What if we want to cover B by just translates of A? We succeed, but at a cost.

Lemma 3.4 (Covering by translates of the set). Let α ∈ R and A,B be finite non-empty sets

in a commutative group. Suppose that |A − B| ≤ α|A|. Then there exists a set S ⊆ B − A of

cardinality at most dα log(|B|)e such that B ⊆ S + A.

Remarks. The example with the random subset found at the top of p.11 suggests that the

bound on the number of necessary translates is sharp. The log(|B|) factor can in general make

a huge difference. However, if we take cardinalities, then the power trick allows us to drop this

additional factor. So in some circumstances this last covering lemma turns out to be the most

efficient.

There are other similar covering lemmas. For example if |A + B| ≤ α|A| then one can find

S ⊆ B − A of cardinality O(α log(|B|)) such that B ⊆ S + A. The proofs of such results use

additive energy and are not covered here.

The proof of the lemma is postponed until Section 5.
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4 Freiman isomorphisms

Combinatorics is not enough to get a strong version of Freiman’s theorem. One needs to be

able to perform Fourier analysis on Zn := Z/nZ, the integers modulo n.

For technical reasons it is often much better to do Fourier analysis on Zn rather than Z. It

is even more advantageous to do Fourier analysis on the characteristic function of a set whose

relative density in Zn is not too small.

With this in mind we set a goal: start with a finite set A ⊂ Z and produce a “model” B for A.

B will be a “somewhat dense” subset of Zn for some n and crucially “encode all the additive

structure of A”.

Have to wait a week or two to see why this is a sound strategy. At this stage we only introduce

one important notion and prove one important result.

Let us begin with a definition due to Freiman, which captures in a concise way the phrase “B

encodes all the additive structure of A”.

Definitions. Let k ≥ 2 be a positive integer and A a subset of a commutative group. A

map φ : A 7→ H from A to a commutative group H is a k-Freiman homomorphism if for all

x1, . . . , x2k ∈ A, the condition

x1 + · · ·+ xk = xk+1 + · · ·+ x2k

implies that

φ(x1) + · · ·+ φ(xk) = φ(xk+1) + · · ·+ φ(x2k).

φ is a k-Freiman isomorphism if it is an injection and the condition

x1 + · · ·+ xk = xk+1 + · · ·+ x2k

is equivalent to

φ(x1) + · · ·+ φ(xk) = φ(xk+1) + · · ·+ φ(x2k).

When no subscript appears, we assume k = 2.

We say A is k-Freiman isomorphic to φ(A).

Note. A Freiman homomorphism is a map with domain A.

A strange definition, so let us familiarise ourselves with it.
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Real time exercise. For each of the following you are given k, A, H and φ. Decide whether

φ is a freiman k-homomorphism. If it is, decide whether it is a k-Freiman isomorphism.

(i) Any k, any A, any H and φ the trivial map that maps everything to zero (in H).

(ii) Any k, A = {1, . . . , n} ⊂ Z, H = Z and φ(i) = 2i.

(iii) k = 2, A = {0, 1} ⊂ Z, H = Z2 and φ is “reduction mod 2” φ(i) = i mod 2.

(iv) Any k, any A ⊂ Rd, H = Rd and φ(v) = Av + b for some invertible d × d matrix A and

some b ∈ Rd.

Solution.
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Example 4.1. (i) Let k, n ≥ 2 be positive integers and A ⊂ Z a finite set of positive integers.

Reduction modn, φ : A 7→ Zn given by φ(i) = i mod n, is a k-Freiman homomorphism. It is a

k-Freiman isomorphism if there is no wrap-around: kmax{A} < n.

(ii) Let k ≥ 2 be a positive integer, p be a prime, 0 6= q ∈ Zp and A ⊆ Zp a set of residues.

Multiplication by q is a k-Freiman isomorphism, φ : A 7→ Zp given by φ(i) = qi mod p.

(iii) Let n, k ≥ 2 be positive integers and A ⊆ Zn a finite set of residues. Mapping x ∈ Zn to the

unique residue in {0, . . . , n−1} is a k-Freiman isomorphism provided that A ⊆ Ij = ( (j−1)n
k

, jn
k

].

φ : A 7→ Z defined by φ(x) = x.

Proof. In principle, we must establish two properties: φ is an injection and

x1 + · · ·+ xk = xk+1 + · · ·+ x2k ⇐⇒ φ(x1) + · · ·+ φ(xk) = φ(xk+1) + · · ·+ φ(x2k).

In fact must only check the if and only if statement!

Injectivity of φ follows from ⇐= by taking x1 = · · · = xk = x and xk+1 = · · · = x2k = y:

If φ(x) = φ(y), then kφ(x) = kφ(y) so kx = ky. When the ambient group is Z of Zp, “k is

cancelled” and so we get x = y.

(i) Only show the second part. Suppose that x1 + · · · + xk = xk+1 + · · · + x2k. Then, as both

sides are integers in {1, . . . , kmax{A}}, we get that the equation is equivalent to x1+ · · ·+xk ≡
xk+1 + · · ·+ x2k mod n. We are done.

(ii) Suppose x1 + · · · + xk ≡ xk+1 + · · · + x2k mod p. q is invertible so this is equivalent to

q(x1+· · ·+xk) ≡ q(xk+1+· · ·+x2k) mod p. This last equations is equivalent to qx1+· · ·+qxk ≡
qxk+1 + · · ·+ qx2k mod p.

(iii) Suppose x1 + · · · + xk ≡ xk+1 + · · · + x2k mod n. Note that because all the residues xi

lie in Ij, we get that the sum x1 + · · · + xk, viewed as an integer, lies in ((j − 1)n, n]. So the

statements x1 + · · · + xk ≡ xk+1 + · · · + x2k mod n and x1 + · · · + xk = xk+1 + · · · + x2k are

equivalent.

Proposition 4.2 (Ruzsa). Let A ⊂ Z be a finite non-empty set of integers and α ∈ R. Suppose

that |A+A| ≤ α|A|. Let k ≥ 2 be a positive integer and m > α2k|A| be another positive integer.

There exists a subset A′ ⊆ A of cardinality at least |A|/k that is k-Freiman isomorphic to a

subset of Zm.

Proof. We construct a series of Freiman isomorphisms φ1, φ2, φ3 and φ4 and take their compo-

sition Z φ1−→ Zp
φ2−→ Zp

φ3−→ Z φ4−→ Zm.

- φ1 is reduction modp. We select any p > kmax{A} and so get a Freiman k-isomorphism.
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- φ2 is multiplication by q 6≡ 0 mod p. A Freiman k-isomorphism. We need to select q carefully.

We will show later on that by cardinality considerations, a suitable q will exist.

- φ3 is the map x 7→ [x]p where a residue x mod p is mapped to its representative in {0, 1, . . . , p−
1}. This is a k-Freiman isomorphism provided that its domain is a subset of Ij for some

j ∈ {1, . . . , k}. We will select a suitable j that will depend on p and q later on. This choice

will determine A′.

- φ4 is reduction modm. We will show that for all p and the particular q, j chosen, any m

works provided that m > α2k|A|.

There are two outstanding issues. Let us clear up the one corresponding to φ3. Let

Aj = φ−11 φ−12 (A ∩ Ij) = {a ∈ A : φ2φ1(a) ∈ Ij}.

The Aj partition A and so
k∑
j=1

|Aj| = |A|. The average of the |Aj| is therefore |A|/k. So there

is a j, which depends on p and q, such that |Aj| ≥ |A|/k. We set A′ = Aj.

The ultimate issue is ensuring that

x1 + · · ·+ xk = xk+1 + · · ·+ x2k ⇐⇒ φ(x1) + · · ·+ φ(xk) = φ(xk+1) + · · ·+ φ(x2k).

Let us start from the right side.

φ(x1) + · · ·+ φ(xk) = φ(xk+1) + · · ·+ φ(x2k) ⇐⇒

[qx1]p + · · ·+ [qxk]p ≡ [qxk+1]p + · · ·+ [qx2k]p mod m ⇐⇒

[qx1]p + · · ·+ [qxk]p − [qxk+1]p − · · · − [qx2k]p ≡ 0 mod m ⇐⇒

[q(x1 + · · ·+ xk − xk+1 − · · · − x2k)]p ≡ 0 mod m (because all xi ∈ Aj).

So for φ to be a k-Freiman isomorphism we require that the only solution to the above equation

is when z := x1 + · · ·+ xk − xk+1 − · · · − x2k = 0.

Fix any 0 6= z ∈ kA − `A. As q ranges in {1, . . . , p − 1}, the product [qz]p also ranges in

{1, . . . , p− 1}. So there are at most (p− 1)/m values of q where [qz]p is divided by m.

There are |kA− `A| − 1 ≤ (αk+`|A| − 1) such z and so at most

(αk+`|A| − 1)
p− 1

m
< p− 1

values of q that will not work. So there is a value of q that works, provided that m > αk+`|A|.
This finishes the proof.

18



A generalisation of sorts of the previous result to sets in any commutative group was given b

Green and Ruzsa.

Theorem 4.3 (Green-Ruzsa). Let A be a finite non-empty set in a commutative group and

α ∈ R. Suppose that |A + A| ≤ α|A|. Then for all k ≥ 2 there exists a group G of cardinality

at most C|A| such that A is k-Freiman isomorphic to a subset of G.

C depends on k and α and may be taken to be C = (10kα)10α
2
.
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5 Representation as sums and additive energy

The topic now becomes more tangible. Let A and B be finite non-empty sets in a commutative

group. We study the number of representations of an element in the ambient group as a sum

of elements in A and B.

It turns out there are a few equivalent ways to define this quantity.

rA+B(x) = # representations of x as a sum in A+B

= |{(a, b) ∈ A×B : x = a+ b}|

= |(x− A) ∩B|

= |A ∩ (x−B)|.

Note that rA+B(x) ≤ min{|A|, |B|}.

rA+B is supported on A+B – the set of x where rA+B(x) 6= 0 is A+B.

Real time exercise. (i) Let A = B = Zp. Find rA+B(x), for all x in the support of rA+A.

(ii) Let A = Zp × {0} and B = {0} × {e1 . . . , ed} in Zp × Zd. Find rA+B(x), for all x in the

support of rA+B.

Solution.

Let us now compute the sum of rA+B(x) over all x in the ambient group.∑
x

rA+B(x) =
∑

x∈A+B

rA+B(x) = |A| |B|. (5.1)

The justification is that each pair (a, b) ∈ A × B contributes exactly once to the sum (for

x = a+ b). One can also argue as follows.∑
x

rA+B(x) =
∑
x

|(x−A)∩B| =
∑
x

∑
a∈A

1B(a−x) =
∑
a∈A

∑
x

1B(a−x) =
∑
a∈A

|B| = |A| |B|.

We now prove Lemma 3.4 on p.14.
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Proof of Lemma 3.4. We construct a nested sequence of subsets of B: B = B1 ⊃ B2 ⊃ · · · ⊃
Bt = ∅. The process terminates when Bt is empty.

At stage i we find si ∈ Bi − A ⊆ B − A such that

B \Bi ⊆ {s1, . . . , si}+ A.

Setting i = t gives {s1, . . . , st} such that B = B \ ∅ ⊆ {s1, . . . , st}+ A.

The first step is completed as follows.

We want to find an s1 such that a large part of B is contained in s1 +A. It is natural to look at

|(x+A)∩B|. Identity (5.1) implies that the average value of the cardinalities of the non-empty

intersections (x+ A) ∩B is∑
x |(x+ A) ∩B|
|A−B|

=
|A||B|
|A−B|

≥ |A||B|
α|A|

=
|B|
α
.

So there exists s1 ∈ B − A such that |(s1 + A) ∩B| ≥ |B|/α.

We set B2 = B \ (s1 + A). Note that |B2| ≤
(

1− 1

α

)
|B1| =

(
1− 1

α

)
|B|.

We iterate. At stage i we have Bi ⊂ B and want to find si such that |(si + A) ∩ Bi| is large.

Identity (5.1) implies that the average value of the cardinalities of the non-empty intersections

(x+ A) ∩Bi is∑
x |(x+ A) ∩Bi|
|A−Bi|

=
|A||Bi|
|A−Bi|

≥ |A||Bi|
|A−B|

≥ |A||Bi|
α|A|

=
|Bi|
α
.

So there exists si ∈ Bi − A such that |(si + A) ∩Bi| ≥ |Bi|/α.

We set Bi+1 = Bi \ (si + A). Note that

|Bi+1| ≤
(

1− 1

α

)
|Bi| ≤

(
1− 1

α

)i
|B| < exp

(
− 1

α

)i
|B| = exp

(
− i
α

)
|B|.

We keep going this way. Only left to estimate after how many steps the process must stop.

When t = dα log(|B|)e, Bt+1 = ∅ as |Bt+1| < 1. So the process terminates in at most dα log(|B|)e
steps.

We now introduce a further way to quantify additive structure, which involves the representation

function and is correlated with small doubling.
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Definition. Let A and B be finite non-empty sets in a commutative group. Their additive

energy is

E(A,B) =
∑

x∈A+B

rA+B(x)2.

We next examine some of the basic properties of the additive energy.

Lemma 5.1 (Cauchy–Schwarz lower bound on additive energy). Let A and B be finite non-

empty sets in a commutative group. Then

E(A,B) ≥ |A|
2|B|2

|A+B|
.

In particular, if |A+B| ≤ α|A|, then E(A,B) ≥ |A|B|
2

α
.

Proof. The proof is a combination of identity (5.1) and the Cauchy–Schwarz inequality. Let us

see first the particular instance of the inequality we will apply.∑
x∈S

ax =
∑
x∈S

ax · 1

≤

(∑
x∈S

a2x

)1/2(∑
x∈S

1

)1/2

=

(∑
x∈S

a2x

)1/2

|S|1/2.

In particular
∑
x∈S

a2x ≥
(∑

x∈S ax
)2

|S|
. Therefore

E(A,B) =
∑

x∈A+B

rA+B(x)2

C−S
≥
(∑

x∈A+B rA+B(x)
)2

|A+B|
(5.1)
=
|A|2|B|2

|A+B|
.

Our next task is to the express additive in equivalent formulations, which, depending on the

context, can be more convenient to use than the definition.
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Lemma 5.2 (Equivalent definitions of additive energy). Let A and B be finite non-empty sets

in a commutative group. Then

E(A,B) =
∑

x+y=z+w

1A(x)1B(y)1A(z)1B(w)

=
∑

x−w=z−y

1A(x)1B(y)1A(z)1B(w)

=
∑

x∈A−B

rA−B(x)2

=
∑

a∈A,b∈B

|(a+B) ∩ (A+ b)|

=
∑

a∈A,b∈B

|(a−B) ∩ (A− b)|.

Proof. The proof of the first identity is useful in many contexts.

∑
s

rA+B(s)2 =
∑
s

( ∑
x+y=s

1A(x)1B(y)

)2

=
∑
s

( ∑
x+y=s

1A(x)1B(y)

)( ∑
z+w=s

1A(z)1B(w)

)
=
∑
s

∑
x+y=s=z+w

1A(x)1B(y)1A(z)1B(w)

=
∑

x+y=z+w

1A(x)1B(y)1A(z)1B(w).

The second identity follows as x+ y = z +w ⇐⇒ x−w = z − y. The third now follows from

the above calculation (replacing B by −B).

The fourth follows from the first, and the fifth from the third.∑
x+y=z+w

1A(x)1B(y)1A(z)1B(w) =
∑

a∈A,b∈B

∑
a+y=z+b

1B(y)1A(z)

=
∑

a∈A,b∈B

|(a+B) ∩ (A+ b)|.

The last two identities combined with the Cauchy–Schwarz lower bound and averaging argu-

ments allow one to prove variants of Lemma 3.4. On of the four possible statements is.

Lemma 5.3. Let α ∈ R and A,B be finite non-empty sets in a commutative group. Suppose

that |A+B| ≤ α|A|. There exists S ⊆ B − A, |S| ≤ dα log(|B|)e such that B ⊆ S + A.
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6 The Balog–Szemerédi–Gowers theorem

This celebrated theorem is a converse of sorts to the statement ‘small doubling implies large

additive energy’.

We have seen that ‘small doubling’ means a doubling constant not far off from the absolute

minimum that is 1. So ‘large additive energy’ must mean additive energy not far off the absolute

maximum. What is this absolute maximum?

Lemma 6.1. Let A and B be finite sets in a commutative group. Their additive energy is

bounded by each of the quantities |A|2|B|, |A||B|2 and |A|3/2|B|3/2.

In particular E(A,A) ≤ |A|3.

Proof. We look at the first expression in Lemma 5.2.

E(A,B) =
∑

x+y=z+w

1A(x)1B(y)1A(z)1B(w)

For each triplet (x, y, z) ∈ A × B × A there is at most one w ∈ B such that w = x + y − z.

Therefore the sum is bounded above by |A|2|B|. Similarly |A||B|2 is also an upper bound.

Considering the product of (both sides of) the two upper bounds and taking a square root

yields the symmetric upper bound E(A,B) ≤ |A|3/2|B|3/2.

Let us now check what can we say about some sets with large additive energy.

Real time exercise. For each of the following sets estimate: the additive energy, the doubling

constant, the largest cardinality of a subset that has small doubling – here take small to mean

a number smaller than any power of the cardinality of the subset.

(i) A = Zn.

(ii) A = Zn × {0} ∪ {0} × Zn ⊂ Z2
n. A can be written in a convenient if sloppy way as

(Zn, 0) ∪ (0,Zn).

(iii) A = (Zn, 0, . . . , 0) ∪ (0,Zn, 0, . . . , 0) ∪ · · · ∪ (0, . . . , 0,Zn) ⊆ Zdn.

Solution.
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The conclusions of the last example and Lemma 6 is that we cannot hope to do much better

than the following statement: if E(A,A) ≥ δ|A|3, then A must contain a subset A′ of relative

density at lest δ and doubling at most δ−1.

The Balog–Szemerédi–Gowers is a statement like the above, where δ is replaced by a power of

itself. Balog and Szemerédi first proved the theorem, but with much weaker bounds.

We will be a little sloppy in the statement and proof of the theorem by not keeping track of

constants. We write P � Q if there exists a constant C such that P ≤ CQ and P � Q if there

exists a constant C such that P ≥ CQ.

Theorem 6.2 (Balog–Szemerédi–Gowers). Let δ > 0 be a real number and A be a finite set in

a commutative group. Suppose that E(A,A) ≥ δ|A|3.

There exists a subset A′ ⊆ A of cardinality at least

|A′| � δ10|A|

such that

|A′ − A′| � δ−32|A′|.

Remark. There are more efficient versions of this result. The important fact is that in the

conclusion only powers of δ or δ−1 appear.

Idea of the proof :
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The first part described above is accomplished by a random selection process.

Lemma 6.3 (Gowers). Let m and n be positive integers and ε > 0 a positive real number.

Suppose A1, . . . , Am are sets in {1, . . . , n} such that
m∑
i=1

|Ai| ≥ εnm.

There exists a subset B ⊆ {1, . . . ,m} of size at least |B| ≥ ε5

2
m such that for at least 90% of

pairs (i, j) ∈ B ×B, |Ai ∩ Aj| ≥
ε2

2
n.

Proof. The set B is chosen by a random process. We let x1, x2, x3, x4 and x5 be chosen

uniformly at random from {1, . . . , n}. B is the set (or more formally, the random variable)

B = {i ∈ {1, . . . ,m} : x1, x2, x3, x4, x5 ∈ Ai}.

Let us calculate a lower bound on the cardinality of B using the linearity of expectation.

E[|B|] =
m∑
i=1

Pr({x1, x2, x3, x4, x5} ∈ Ai)

=
m∑
i=1

Pr(x1 ∈ Ai)5

=
m∑
i=1

(
|Ai|
n

)5

Jansen
≥ m

(
m∑
i=1

|Ai|
nm

)5

≥ ε5m.

Side note: a perhaps more intuitive way to interpret the first inequality is to say that the sum

of the fifth powers is minimised when all summands are equal to their average.

We deduce a lower bound on the cardinality of B ×B.

E[|B ×B|] = E[|B|2] ≥ E[|B|]2 ≥ ε10m2. (6.1)

We used the fact that the variance of B is non-negative (or the Cauchy–Schwarz inequality).

The nest step is to bound from above the expected number of pairs (i, j) ∈ B × B where

|Ai ∩ Aj| ≤
ε2

2
n. We define C ⊂ B ×B to be the set of “bad” ordered pairs:

C = {(i, j) ∈ B ×B : |Ai ∩ Aj| ≤
ε2

2
n}.
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We want to bound the expected value of the cardinality of |C|. Once again the linearity of

expectation is handy.

E[|C|] =
m∑

i,j=1
|Ai∩Aj |≤ε2n/2

Pr((i, j) ∈ B ×B).

Note that if |Ai ∩ Aj| ≤
ε2

2
n, then

Pr((i, j) ∈ B ×B) = Pr(i ∈ B AND j ∈ B)

= Pr({x1, x2, x3, x4, x5} ⊆ Ai ∩ Aj)

=

(
|Ai ∩ Aj|

n

)5

≤ ε10

32
.

Therefore

E[|C|] ≤ ε10

32
m2. (6.2)

Combining inequalities (6.1) and (6.2) we get that

E[|B ×B| − 16|C|] = E[|B ×B|]− 16E[|C|] ≥ ε10

2
m2.

It follows that there is a set B (or if you prefer an instance of the random variable) such that

|B| ≥
√
ε10

2
m2 ≥ ε5

2
m

and

|B ×B| − 16|C| ≥ 0.

In particular

|(B ×B) \ C|
|B ×B|

=
|B ×B| − |C|
|B ×B|

≥ 15

16
≥ 9

10
.

The proof is completed.

Remarks. The method is called dependent random choice. The number of random points xi

is determined by the desired degree of accuracy – 5 corresponds to 15/16 ≥ 9/10.
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Before we move to the main body of the proof, let us isolate as another introductory lemma, a

statement whose proof s typical and very useful.

Lemma 6.4. Let n be a positive integer, δ > 0 a real number and S a finite set. Suppose that

f : S 7→ {0, . . . , n} is a function that satisfies three properties:

(i) f(x) ≤ n for all x ∈ S (this is implied by the co-domain of f).

(ii)
∑
x∈S

f(x) = n2.

(iii)
∑
x∈S

f(x)2 ≥ δn3.

There exist at least δn/2 elements of S where f(x) is at least δn/2.

Proof. Note that

δn3 ≤
∑
x∈S

f(x)2

=
∑

f(x)≥δn/2

f(x)2 +
∑

f(x)<δn/2

f(x)2

≤
∑

f(x)≥δn/2

f(x)2 +
δn

2

∑
f(x)<δn/2

f(x)

≤
∑

f(x)≥δn/2

f(x)2 +
δn

2

∑
x

f(x)

=
∑

f(x)≥δn/2

f(x)2 +
δn3

2
.

Therefore

δ

2
n3 ≤

∑
f(x)≥δn/2

f(x)2

≤ n2
∑

f(x)≥δn/2

1

≤ n2|{x ∈ S : f(x) ≥ δn/2}|.

So the the set of x ∈ S where f(x) is at least δn/2 has cardinality at least δn/2.
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Proof of Balog–Szemerédi–Gowers. The proof is completed in three steps.

1. Construction of two graphs with vertex sets subsets of A and edges determined by subsets

of A− A; definition of A′.

2. Counting paths of length four that start and end in A′ in the first graph.

3. Comparing a lower bound and an upper bound on the number of 8-tuples (z1, . . . , z8) ∈ A8

such that z1 − z2 + z3 − · · ·+ z7 − z8 ∈ A′ − A′.

Reference list:

• popular difference d: rA−A(d) ≥ δ|A|/2.

• G graph with vertex set A and ax an edge iff ax is a popular difference.

• B ⊆ A where at least 90% of pairs (b, c) satisfy |ΓG(b)∩ΓG(c)| ≥ δ4|A|/32. |B| � α10|A|.

• H graph with vertex set B and bc an edge iff |ΓG(b) ∩ ΓG(c)| ≥ δ4|A|/32.

• A′ ⊆ B is determined by a′ ∈ A′ if |ΓH(a′)| ≥ 4|B|/5. |A′| ≥ |B|/2� α10|A|.

Step 1. We apply Lemma 6.4 to the set S = A−A and the function rA−A. There exist at least

δ|A|/2 so-called popular differences with at least δ|A|/2 representations.

We form a graph G with vertex set A and edges determined by ax is an edge iff a − x is a

non-zero popular difference. Note that the definition is symmetric and antireflexive. We denote

by ΓG(a) the set of neighbours of a in G.

Let us bound from bellow the sum of the cardinalities of the neighbourhoods in G.

∑
a∈A

|ΓG(a)| = 2|E| =
∑

d popular

rA−A(d) ≥
(
δ

2
|A|
)(

δ

2
|A|
)

=
δ2

4
|A|2.

Lemma 6.3, applied to the sets Γ(a) and m = n = |A|, guarantees the existence of a set B ⊆ A

such that

|B| � δ10|A| (6.3)

and at least 90% of pairs (b, c) ∈ B ×B satisfy |ΓG(b) ∩ ΓG(c)| ≥ δ4|A|/32.

We now define a new graph H with vertex set B and edges determined by bc is an edge iff

|ΓG(b) ∩ ΓG(c)| ≥ δ4|A|/32.
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Let us bound from bellow the sum of the cardinalities of the neighbourhoods in H.

∑
b∈B

|ΓH(b)| ≥ 9

10
|B|2.

We are finally in position to define A′.

A′ =

{
b ∈ B : |ΓH(b)| ≥ 4|B|

5

}
.

A simple calculation shows that |A′| ≥ |B|/2.

9

10
|B|2 ≤

∑
b∈B

|ΓH(b)|

=
∑
b∈A′

|ΓH(b)|+
∑
b/∈A′

|ΓH(b)|

≤ |B||A′|+ 4|B|
5

(|B| − |A′|).

so that

|A′| ≥ |B|
2

(6.3)
� δ10|A|. (6.4)

Step 2. Let us now bound from below the number of distinct paths of length four in the first

graph G that start at a pair of distinct vertices a′ 6= b′ ∈ A′. Inclusion-exclusion gives that

|ΓH(a′) ∩ ΓH(b′)| = |ΓH(a′) + |ΓH(b′)| − |ΓH(a′) ∪ ΓH(b′)| ≥ 4|B|
5

+
4|B|

5
− |B| = 3|B|

5
.

Therefore a′ and b′ have at least 3|B|/5 common neighbours c.

By the definition of H we know that a′ and c have at least δ4|A|/32 common neighbours x in

G. Similarly b′ and c have at least δ4|A|/32 common neighbours y in G.

Therefore there are at least(
3|B|

5

)(
δ4|A|

32

)(
δ4|A|

32

)
(6.3)
� δ18|A|3 (6.5)

distinct paths of the form a′xcyb′ (there are at least 3|B|/5 choices for c and at least δ4|A|/32

choices for each of x and y).

Step 3. Let us now bound in two different ways the number N of 8-tuples (z1, . . . , z8) ∈ A8

such that z1 − z2 + z3 − · · ·+ z7 − z8 ∈ A′ − A′.
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It is clear that N ≤ |A|8.

To get a lower bound on N , we bound from bellow how many 8-tuples exist for each distinct

d = a′ − b′ ∈ A′ − A′. Note that each path a′xcyb′ in G corresponds to the identity

a′ − b′ = (a′ − x) + (x− c) + (c− y) + (y − b′).

Each edge corresponds to a popular difference, and so we can express, say, a′−x in at least δ|A|/2
ways as z1−z2 ∈ A−A. Therefore each path corresponds to at least (δ|A|/2)4 distinct 8-tuples.

Combining this with inequality (6.5) implies that there is � δ22|A|7 8-tuples (z1, . . . , z8) ∈ A8

such that z1 − z2 + z3 − · · ·+ z7 − z8 = a′ − b′.

Summing over all d′ ∈ A′ − A′ gives

N � δ22|A|7|A′ − A′|.

Comparing this with the upper bound of |A|8 yields

|A′ − A′| � δ−22|A|
(6.4)
� δ−32|A′|.
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7 The Szemerédi–Trotter theorem

In an abrupt change of topic we now move to combinatorial geometry.

We wish to derive sharp estimates on the number of incidences between a finite set of lines and

a finite set of points in the plane R2. More on this later on.

It turns out that in the proof we will need the notion of a drawing of a graph and of the crossing

number of a graph.

Definition. Let be G a finite graph. A drawing is a map that takes vertices to points of R2

and edges to curves (smooth functions from [0, 1] 7→ R2) which start and end at the images of

their endpoint-vertices.

Example. LetG = (V,E) with V = {1, 2, 3, 4, 5} and E = {{1, 2}, {2, 4}, {2, 5}, {3, 4}, {4, 5}} .
Give two genuinely different drawings.

Definition. Let be G a finite graph. The crossing number of G is the least number of crossings

in any drawing of G on the plane (the number of points where a pair of edges intersect, excluding

intersections at vertices).

Let us consider G with vertex set V = {1, 2, 3, 4} and edge set E = {{1, 2}, {3, 4}}.

cr(G) = .

Real time exercise. For each of the following cycles determine the crossing number.

(i) C3 with vertex set V = {1, 2, 3} and edge set E = {{1, 2}, {2, 3}, {3, 1}}.

(ii) C4 with vertex set V = {1, 2, 3, 4} and edge set E = {{1, 2}, {2, 3}, {3, 4}, {4, 1}}.
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Let us now quickly cover some facts about the so-called planar graphs.

Definition. A graph is called planar if its crossing number is zero.

For example, the 5-cycle C5 is a planar graph, yet the complete graph on 5 vertices K5 is not.

When a graph is planar, one can talk about its faces.

A face of a finite planar graph is a connected region of the subset of the plane resulting from

removing a drawing of the graph.

In the examples we saw above the faces are:

A word of warning: an intuitive interpretation of the word ‘face’ result in one fewer face than

the definition. The definition forces a triangle to have two faces. All finite planar graphs have

an unbounded face, which comes from the unbounded component.

Euler proved that for finite connected planar graphs.

|F | − |E|+ |V | = 2. (7.1)

Here |F | is the number of faces (and as usual |E| the number of edges and |V | the number of

vertices).

Let us deduce an upper bound on the number of edges in a finite planar graph, which will be

useful later on. The controversial faces will not appear.

Lemma 7.1. Let G = (V,E) be a finite planar graph. Then |E| < 3|V |.

Proof. We may assume that the graph is connected by considering the connected parts of the

graph and adding both parts of the corresponding inequalities.

We show that 3|F | ≤ 2|E|. Let us count in two ways the number N of edge-face incidences.

Each face is incident to at least three edges, while each edge is incident to two faces. Therefore

3|F | ≤ N = 2|E|.

Euler’s formula (7.1) now implies

0 < |F | − |E|+ |V | ≤ 2|E|/3− |E|+ |V | = −|E|/3 + |V |.
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Corollary 7.2. Let G = (V,E) be a finite graph. Then |E| < 3|V |+ cr(G).

Proof. Suppose that we have a drawing of the finite graph with exactly cr(G) crossings. By

removing at most one edge from each crossing we make the graph planar. Applying Lemma

7.1 to the resulting graph, which has |V | vertices and at least |E| − cr(G) edges, gives

|E| − cr(G) < 3|V |.

We now prove a lower bound on the number of crossings.

Lemma 7.3 (Ajtai–Chvátal–Newborn–Szemerédi, Leighton). Let G = (V,E) be a finite graph.

Suppose |E| ≥ 4|V |. Then

cr(G) ≥ |E|3

64|V |2
.

Proof. The key is to consider induced random subgraphs of G. Let Gp = (Vp, Ep) be the random

induced subgraph where each vertex is included independently with uniform probability p.

Corollary 7.2 gives that the random variable 3|Vp|+cr(Gp)−|Ep| is positive. Taking expectation

and using its linearity gives

E[|Ep|]− 3E[|Vp|] < E[cr(Gp)].

Another application of the linearity of expectation gives that the left side is p2|E| − 3p|V |.

The right side is at most p4cr. Each crossing in a drawing of G that gives rise to cr(G) appears

with probability p4. Therefore the expected number of crossings in the drawing of Gp coming

from the aforementioned drawing of G is p4cr(G). The expected value of cr(Gp) is bounded

above by this quantity.

We therefore have

cr(G) >
p|E| − 3|V |

p3
.

Letting p = 4|V |/|E|, which by the hypothesis is at most one, gives the desired lower bound.

Remark. The bound is attained up to a constant on Kn, the complete graph on n vertices.

We use this inequality to establish an upper bound on the number of point-line incidences.
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Definition. Let P be a finite set of points and L be a finite set of lines on the plane R2. The

number of point-line incidences is

I(P,L) = |{(p, `) : p ∈ P, ` ∈ L, p ∈ `}|.

Examples.

Theorem 7.4 (Szemerédi–Trotter). Let P be a finite set of points and L be a finite set of lines

on the plane R2. Then number of point-line incidences is at most

I(P,L) ≤ 4(|L|2/3|P |2/3 + |L|+ |P |).

Proof by Székely. Given a finite set of points and a finite set lines, we deduce a drawing of

a graph by placing an edge between consecutive points on a line. This then gives rise to an

abstract graph G = (V,E). Note that V = P .

If |E| ≥ 4|V |, then Lemma 7.3 gives

|E|3

64|V |2
≤ cr(G) ≤

(
|L|
2

)
≤ |L|2.

The upper bound on the crossing number comes from the fact that any two distinct lines on

the plane meet in at most one point. So there cannot be more crossings in G than the number

of pairs of lines.

This yields |E| ≤ 4|L|2/3|V |2/3 = 4|L|2/3|P |2/3.

The bound

|E| ≤ 4(|L|2/3|P |2/3 + |P |).

accounts for the possibility that |E| ≤ 4|V |.

The last task is to obtain an expression for |E|. Each line with i points incident on it, contributes

precisely (i− 1) edges to G and so |E| = I(P,L)− |L|. The claim now follows.

Remark. All three terms are necessary.
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The Szemrédi–Trotter theorem has plenty of applications in unexpected places. The most

spectacular has to be that of Elekes on the sum-product problem of Erdős.

Conjecture 7.5. Let A ⊂ R be a finite set of real numbers. Then

max{|A · A|, |A+ A|} � |A|2−ε for all ε > 0.

Remark. The ε is necessary. For example when A = {1, . . . , n}, then |A·A| � |A|2/ log log(n).

This is a non-trivial statement. It can be deduced by applying Chebyshev’s inequality to the

function ω(i) that counts the number of distinct prime factors of the positive integer i. A result

of Erdős and Kac states that ω(n) (viewed as a random variable under the uniform distribution

on {1, . . . , n}) has asymptotic mean log log(n) and asymptotic variance σ2 = log log(n).

Theorem 7.6 (Elekes). Let A ⊂ R be a finite set of real numbers. Then

|A · A| |A+ A| ≥ |A|
5/2

16
.

In particular

max{|A · A|, |A+ A|} ≥ |A|
5/4

4
.

Proof. We apply Szemerédi–Trotter to

P = (A+ A)× (A · A) and L = {y = a(x− b) : a, b ∈ A}.

Note that |P | = |A + A||A · A| and |L| = |A|2. The line y = a(x − b) is incident to the

points (b + c, ac) for all c ∈ A. Therefore each line is incident to at least |A| points and so

I(P,L) ≥ |A||L| = |A|3.

Szemerédi–Trotter gives

|A|3 ≤ 4(|A|4/3|A+ A|2/3|A · A|2/3 + |A|2 + |A+ A||A · A|) ≤ 5|A|4/3|A+ A|2/3|A · A|2/3.

Consequently

|A+ A||A · A| ≥ |A|
5/2

53/2
≥ |A|

5/2

16
.
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