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Exercise Sheet 13

Due date: Feb 6th, 2:00 PM, tutor box of Shagnik Das
Late submissions will be snubbed worse than Leonardo DiCaprio at the Oscars.

You should try to solve and write up all the exercises. You are welcome to submit at
most three neatly written exercises for correction each week. You are encouraged to submit
in pairs, but please indicate the author of each solution. Each problem is worth 10 points.

Exercise 1. Let J be a family of d-intervals not containing three pairwise-disjoint d-
intervals; that is, there are no J1, J2, J3 ∈ J with Ji ∩ Jj = ∅ for every 1 ≤ i < j ≤ 3. Show
that J has a transversal of size 4d2.

Exercise 2. Let k ≥ 1 be some integer, and let A and B be two 2k × 2k matrices. We wish
to efficiently compute the product C = AB. We express these as block matrices:

A =

(
A1,1 A1,2

A2,1 A2,2

)
, B =

(
B1,1 B1,2

B2,1 B2,2

)
, and C =

(
C1,1 C1,2

C2,1 C2,2

)
.

We now define some new matrices:

M1 = (A1,1 + A2,2)(B1,1 +B2,2), M2 = (A2,1 + A2,2)B1,1, M3 = A1,1(B1,2 −B2,2),
M4 = A2,2(B2,1 −B1,1), M5 = (A1,1 + A1,2)B2,2, M6 = (A2,1 − A1,1)(B1,1 +B1,2),

and M7 = (A1,2 − A2,2)(B2,1 +B2,2).

(i) Express the blocks Ci,j in terms of the blocks Ai,j and Bi,j.

(ii) Verify the following identities:

C1,1 = M1+M4−M5+M7, C1,2 = M3+M5, C2,1 = M2+M4, and C2,2 = M1−M2+M3+M6.

(iii) One can reuse these identities to calculate the products in the definition of the matrices
Mi, leading to a recursive algorithm for computing the product C = AB. Estimate
the running time (in terms of the number of arithmetic operations) of this algorithm.

(iv) For general integers n ≥ 1, how can this algorithm be applied to n× n matrices?
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Exercise 3. In this exercise, F is an arbitrary field, but you may assume F = Q if you like.

(i) Show that the Schwartz–Zippel theorem can be tight. That is, show that for any S ⊆ F
with |S| ≥ d, there is a polynomial in n variables of degree d with exactly d |S|n−1 roots
(r1, . . . , rn) ∈ Sn.

(ii) Prove the following generalisation of the Schwartz–Zippel theorem: For any non-zero
polynomial p ∈ F[x1, x2, . . . , xn] of degree at most d, and subsets S1, S2, . . . , Sn ⊂ F,
each of size s, the number of roots

{(r1, r2, . . . , rn) ∈ S1 × S2 × . . .× Sn : p(r1, r2, . . . , rn) = 0}

is at most dsn−1.

Exercise 4. You give your friend two n× n matrices A and B to multiply, and he tells you
the answer is C. To check that he is correct, you run the randomised verification algorithm,
multiplying both C and AB by a random vector ~x ∈ {0, 1}n.

(i) How many times do you have to run the algorithm to have at least 95% confidence in
the outcome?

Suppose you run the algorithm, and find that C~x 6= AB~x. This proves the existence of a
mistake. However, to complain to your friend, you would like to explicitly find a mistake;
that is, find some i and j such that Cij 6= (AB)ij.

(ii) How many more arithmetic operations will this take?

To save time, instead of choosing a random vector ~x ∈ {0, 1}n, you take a random vector
~x ∈ {0, 1, . . . , N}n instead.

(iii) If indeed C 6= AB, what now is the probability of your algorithm accepting C as being
correct? What are the drawbacks to this approach?

Exercise 5. Suppose we have some univariate polynomial p ∈ F[x] of degree at most d that
we only have oracle access to, so that for any input y ∈ F, we are told the value p(y).

(i) Explain how we can determine the coefficient of yk with at most d+ 1 oracle queries.

Suppose now we have a bipartite graph G = (U ∪ V,E) with |U | = |V | = n, and suppose
further that the edges E are coloured red or blue.

(ii) Using part (i), explain how we can extend the randomised perfect matching testing
algorithm to test whether or not there is a perfect matching of G with exactly k red
edges.
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Exercise 6. This exercise will show you how to extend our randomised perfect matching
algorithm for bipartite graphs to general graphs. Let G = ([n], E) be a graph on n vertices.

We introduce a new variable xij for each edge {i, j} ∈ E. The Tutte matrix A of the
graph G is defined as A = (aij)i,j∈[n], where

aij =


+xij if i < j and {i, j} ∈ E,
−xij if i > j and {i, j} ∈ E,
0 otherwise.

(i) Find both the Tutte matrix A and its determinant det(A) when G = K3 and G = C4.

(ii) Show det(A) 6≡ 0 if G has a perfect matching.

We can think of a permutation π ∈ Sn in terms of its cycle structure1, which allows us to
define sgn(π) = (−1)# even cycles in π. We then have det(A) =

∑
π∈Sn

sgn(π)
∏

i∈[n] aiπ(i).

(iii) If we think of isolated edges as cycles of length two, show that any nonzero monomial
in this expansion of det(A) corresponds to a partition of [n] into vertex-disjoint cycles
in G.

(iv) By reversing the direction of an odd cycle, show that if det(A) 6≡ 0, then there is some
partition of [n] into vertex-disjoint cycles in G, all of which have even length.

(v) Deduce that det(A) 6≡ 0 if and only if G has a perfect matching, and give a randomised
algorithm for testing for the existence of a perfect matching in G.

1For example, if n = 6 and π(1) = 2, π(2) = 5, π(3) = 4, π(4) = 3, π(5) = 1 and π(6) = 6, then π has
cycle structure (1 2 5) (3 4) (6).
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