
Algorithmic Combinatorics WS 2014 / 2015
Tibor Szabó
Shagnik Das

Solutions to Exercise Sheet 14

Exercise 1. Suppose one can compute the determinant of an n × n matrix with O(nω)
arithmetic operations. There is a probabilistic algorithm that tests for the existence of
perfect matchings in an n-vertex graph with O(nω) operations.

Using this algorithm, develop an algorithm for finding a perfect matching in an n-vertex
graph with m edges that requires O(mnω log n) operations.

Solution: The first step to finding a perfect matching is determining whether one exists. We
may therefore first run the randomised algorithm and, if it returns the existence of a perfect
matching, try to find it. To remove any possible ambiguity, we will suppose that both the
vertices and edges of the graph are ordered (arbitrarily, perhaps), so that we may talk of the
first vertex (or edge) in some set of vertices (or edges).

To find the perfect matching, we start with an empty matching and proceed edge-by-
edge, trying to find an edge we can enlarge our current matching by. Of course, we need
to have a perfect matching at the end of the process, so we must ensure that our current
matching can always extend to a perfect matching. Luckily for us, we have a probabilistic
algorithm that can determine this for us.

Thus we start by setting the initial matching to be empty, M0 = ∅. Given 1 ≤ i ≤ n
2

and a partial matching Mi−1 that can be extended to a perfect matching, let vi be the first
vertex not spanned by Mi−1. We now search for an edge incident to vi that we can add to the
matching Mi−1 (such an edge must exist, as we know Mi−1 extends to a perfect matching).

Consider the edges between vi and its neighbours not spanned by Mi−1, and consider
each such edge e in order. Let M ′

i = Mi−1 ∪ {e}, and G′ = G \M ′
i . Run the randomised

algorithm to see if G′ has a perfect matching. If not, then we discard e and try the next
available edge. If it does, though, this means that M ′

i extends to a perfect matching, so we
set Mi = M ′

i and iterate with the next available vertex vi+1.
By the end of this algorithm, we will have found a perfect matching Mn

2
, provided we

always got the correct answer when asking if a matching exists in the subgraphs G \M ′
i .

Each individual application of the randomised algorithm is correct with probability 1
2
, but we

have to call upon this algorithm repeatedly, and will with high probability get a false result
at some point. Hence, in order to ensure our algorithm works with positive probability, we
can repeatedly run the randomised algorithm to boost its accuracy.

By repeating the individual randomised test k times, the error probability is reduced to
2−k. Note that we need to test the existence of a matching in at most m subgraphs, since
after an edge is discarded it is never considered again. Thus, by repeating each individual

1

randomised test at most k times (if the test tells us a matching exists, it cannot be an
error, hence we can add the edge in question to the matching and proceed without any
further repetitions of that test), the expected number of overall errors is at most m2−k.
For k = dlog2me + 1, this expectation is at most 1

2
. Hence, by Markov’s Inequality, the

probability of the algorithm failing is at most 1
2
.

Finally, this procedure calls the randomised existence algorithm at most mk times, with
each call requiring O(nω) operations. Since k = O(logm) and m = O(n2), it follows that
the above algorithm requires O(mnω log n) operations.

Exercise 2. The goal of this exercise is to prove m(k) = O(k22k) via a randomised con-
struction. Fix the ground set of elements [2n], and consider the random hypergraph F with
m edges, F1, F2, . . . , Fm, chosen independently and uniformly at random (with repetition)
from the family

(
[2n]
k

)
of all k-sets in [2n].

(i) Let χ be a (fixed) red/blue colouring of the elements [2n]. Show that, for each i, the
probability of Fi being monochromatic is at least 2

(
n
k

)
/
(
2n
k

)
.

(ii) If p is the lower bound from (i), show that p = 2
∏k−1

j=0
n−j
2n−j ≥

(
n−k
2n−k

)k
. Given 1− x ≤

e−x ≤ 1 − 1
2
x for x sufficiently small, show that p ≥ 2−ke−2k

2/(2n−k) if n is sufficiently
large with respect to k.

(iii) Deduce that the probability of there being a proper colouring of F is at most 22n(1−
p)m.

(iv) By choosing appropriate values for m and n in terms of k, show that there exists a
non-two-colourable k-graph F with O(k22k) sets.

Solution:

(i) Suppose χ has r red elements, and 2n− r blue elements. There are then
(
r
k

)
all-red k-

sets and
(
2n−r
k

)
all-blue k-sets out of the total

(
2n
k

)
k-sets. Since Fi is chosen uniformly

at random, the probability that Fi is monochromatic under χ is

p :=

(
r
k

)
+
(
2n−r
k

)(
2n
k

) ≥
2
(
n
k

)(
2n
k

) ,
where the inequality follows from the convexity of

(
x
k

)
for x ≥ k − 1.

(ii) Since
(
n
k

)
= (k!)−1

∏k−1
j=0(n− j), we can expand the binomial coefficients to get

p ≥
2
(
n
k

)(
2n
k

) =
2(k!)−1

∏k−1
j=0(n− j)

(k!)−1
∏k−1

j=0(2n− j)
≥

k−1∏
j=0

n− j
2n− j

.

2

These terms are decreasing in j, so n−j
2n−j ≥

n−k
2n−k , and thus we have

p ≥
(
n− k
2n− k

)k

=

(
1

2
− k

4n− 2k

)k

= 2−k
(

1− k

2n− k

)k

.

Provided k = o(n), we have 1− k
2n−k ≥ e−2k/(2n−k), and hence p ≥ 2−ke−2k

2/(2n−k).

(iii) A colouring χ is proper if and only if each of the edges Fi is not monochromatic. Since
the sets Fi are chosen independently, these events are independent, and each occurs
with probability at most 1 − p. Hence the probability that a given colouring χ is
proper is at most (1 − p)m. Taking a union bound over all 22n possible colourings
of the groundset [2n], the probability of there existing a proper colouring is at most
22n(1− p)m.

(iv) We can further bound the probability of there being a proper colouring by

22n(1− p)m ≤ 22ne−pm. (∗)

If this bound is less than 1, then it follows that with positive probability we have a
non-two-colourable k-uniform hypergraph with m sets. This bound is less than 1 if
and only if epm > 22n, or m > 2np−1 ln 2. By our lower bound on p, it suffices to have
m > 2k+1e2k

2/(2n−k)n ln 2. At this point it is enough to note that if we take n = 2k2,
say, then we get the desired bound of m = O(k22k). In the sequel, we try to justify a
bit further why this is approximately the right choice for n.

To achieve a good bound on m(k), we should try to make m as small as possible. Since
k is fixed, we only need to minimise e2k

2/(2n−k)n. Taking logs, this is equivalent to
minimising 2k2

2n−k + lnn. Introduce a change of variables by setting n = k2

ω
+ k

2
, after

which we seek to minimise

2ω + ln

(
k2

ω
+
k

2

)
= 2ω − lnω + 2 ln k + ln

(
1 +

ω

2k

)
. (∗∗)

Note that if we take ω = 1
2
, (∗∗) becomes 2 ln k + 1 + ln

(
1 + 1

4k

)
∼ 2 ln k + 1 + 1

4k
≤

2 ln k + 2.

Since the expression in (∗∗) can be bounded below by 2ω− lnω ≥ ω, we may therefore
assume 0 < ω ≤ 2 ln k + 2. In this range, the last summand in (∗∗) is asymptotically
ω/(2k), and so we need to minimise 2 ln k+(2+1/(2k))ω− lnω. Setting the derivative
equal to zero shows that there is a minimum when ω = (2 + 1/(2k))−1 ≈ 1

2
, which

corresponds to n ≈ 2k2.

Exercise 3. Improve either1 the upper or lower bound on m(k) to k2k.2

Solution: If I had a solution, I’m afraid this wouldn’t be where I’d write it down!

1Bonus points for doing both!
2A successful solution might constitute a good start to a Ph.D.

3

Exercise 4. Show that the bound in the Erdős–Selfridge theorem is tight, i.e. m̃(k) = 2k−1.

[Hint: redisnoC a yranib eert fo htped k − 1, dna dliub a elbatius hpargrepyh. esU eht
yrtemmys fo eht eert ot dnif a ygetarts rof M.]

Solution: We will give a couple3 of constructions of k-uniform hypergraphs F with 2k−1

edges on which Maker (M) has a winning strategy, thus showing m̃(k) ≤ 2k−1. Together
with the lower bound from lecture, this shows m̃(k) = 2k−1.

For the first, take the ground set to be the vertices V of a rooted binary tree T of depth
k − 1. That is, there is a root vertex v0 with two children — we shall think of them as a
left- and right-child of v0. Each child will itself have two children, and so on until we reach
level k − 1, where we will have 2k−1 leaf vertices. The hyperedges of the hypergraph F will
be the 2k−1 paths from the root vertex v0 to a leaf of T .

Maker plays first, and should start by claiming the root. In fact, Maker’s ith move will
always be at depth i− 1, and so Maker’s vertices will grow as a path starting from the root.
If Maker can proceed in this fashion for k turns, she will have a path of length k, which must
end at a root. Hence this will constitute a winning set, giving the desired winning strategy.

To see that Maker can do this, suppose that after her ith turn, Maker has successfully
occupied a path of length i, starting at the root v0 and ending at some vertex vi−1 at depth
i− 1, such that Breaker (B) has not occupied any descendent of (i.e. vertex below) of vi−1.
This is certainly true for i = 1, since Breaker has not even played at this point.

On his ith turn, Breaker can occupy a vertex in either the left- or right-subtree of vi−1
(or neither), but as they are disjoint, he cannot occupy both. On her next turn, Maker can
then choose either the right- or left-child of vi−1 accordingly, thus extended her path and
maintaining the property that Breaker has not occupied any vertex below the last vertex vi.
By doing this for k turns, Maker wins the game.

A similar idea lies behind the second example. Let the ground set to be the disjoint
union X = S0 ∪ S1 ∪ S2 ∪ . . .∪ Sk−1, where |S0| = 1 and |Si| = 2 for 1 ≤ i ≤ k− 1. Take the
hypergraph to be F = S0 × S1 × . . .× Sk−1, and observe that |F| = 2k−1.

Maker starts by choosing the sole element of S0. Then in each subsequent move, Breaker
must choose some element from a set Si, 1 ≤ i ≤ k− 1. Whenever Breaker does this, Maker
responds by choosing the other element from the same set Si. In this way, Maker guarantees
that she occupies one element from each set Si, which gives her some edge F ∈ F , and thus
she wins.

It may be interesting to note that in both of these examples, not only does Maker win,
but she wins in k moves, which is clearly as fast as possible. However, if you remove even
one of the winning sets in F , then Maker cannot win no matter how long they play!

3Only one is needed to solve the problem, but the more, the merrier, right?

4

Exercise 5. Suppose M and B play a more symmetric game on a k-graph F . In every turn,
first M colours one element red, and then B colours one element blue. The first player to
have coloured (with his or her own colour) every element in some F ∈ F wins the game. If
all the elements get coloured without either player managing to win, the game is a draw.

Show that for any k-graph, M has a strategy that guarantees her either a win or a draw.

Solution: This is a finite game of perfect information, and so either one player has a winning
strategy, or both players can guarantee a draw. Suppose for contradiction B has a winning
strategy. This means that, as second player, he can respond to any sequence of moves M
makes and guarantee that he wins the game at the end.

M can now steal this strategy — she plays her first move x0 arbitrarily, forgets about
it, and then pretends she is the second player and uses B’s winning strategy. If at any
point during the game the strategy requires her to claim x0, then she can claim some other
available element x1 arbitrarily, since she has already claimed x0. Proceeding in this fashion,
she can respond to any sequence of moves B makes, and then should win the game. However,
if B is using his winning strategy, then he should also win the game. As at most one player
can win the game, it follows that B cannot have a winning strategy.

(Intuitively, the reason this strategy stealing works is that M can never be disadvantaged
by having claimed an extra element. Thus this method cannot show that Black cannot have
a winning strategy in chess.)

Exercise 6. Let G be a bipartite graph with n vertices. Show that if every vertex of G is
assigned a list of log2(n) colours, G has a proper list-colouring.

Solution: (We shall assume that n ≥ 3, since the result is false for n = 2, but graphs on 2
vertices are not very interesting anyway.)

Let G = (V1 ∪ V2, E), and let C = ∪vL(v) be the set of all colours that appear in the
lists. We randomly partition C = C1 ∪C2 by assigning each colour c ∈ C to either C1 or C2

independently and uniformly at random.
Once we have this random partition, colour every vertex v ∈ Vi with an arbitrary colour

from L(v)∩Ci. Provided we can choose a colour for each vertex (that is, that the intersection
is not empty), this must give a proper list-colouring, since each edge will have one colour
from C1 and the other from the disjoint set C2.

Given a vertex v ∈ Vi, define an indicator random variable

Xv =

{
1 if L(v) ∩ Ci = ∅
0 otherwise

.

Xv indicates when v cannot be coloured, so X =
∑

vXv counts how many uncolourable
vertices there are. We have P(Xv = 1) = 2−|L(v)| = 2− log2 n = 1/n, and so

E[X] = E

[∑
v

Xv

]
=
∑
v

E[Xv] =
∑
v

P(Xv = 1) = n · 1

n
= 1.

5

However, since n ≥ 3, we may without loss of generality assume |V1| ≥ 2. When we
have C1 = ∅ and C2 = C, which occurs with positive probability (2−|C|, to be precise), then
the events Xv for v ∈ V1 all occur simultaneously, and hence X = |V1| ≥ 2. Since X is a
non-negative variable and has average E[X] = 1, it follows that we must have X = 0 with
positive probability as well.

Thus there exists a partition C = C1 ∪C2 such that for i = 1, 2 and for every v ∈ Vi, we
can colour v with some colour from L(v) ∩ Ci, which gives rise to a proper list-colouring.

6

