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Solutions to Exercise Sheet 14

Exercise 1. Extend the proof of the Local Lemma from class (for two-colouring hyper-
graphs) to the following more general theorem (which has the optimal constants).

Theorem 1 (Lovász Local Lemma). Let E1, E2, . . . , Em be events in some probability space.
Let d ∈ N and p ∈ [0, 1] be such that, for every i ∈ [m], we have

(1) P(Ei) ≤ p, and

(2) there is a set Γ(i) ⊆ [m]{i} of at most d indices, such that the event Ei is mutually
independent of {Ej : j ∈ [m] \ (Γ(i) ∪ {i})}.

If ep(d + 1) ≤ 1, then with positive probability none of the events Ei occur.

It may help to show that for any i ∈ [m] and J ⊆ [m]\{i}, we have P
(
Ei| ∩j∈J Ec

j

)
≤ ep.

You may use the estimate (1− 1/(d + 1))d ≥ e−1.

Solution: We shall indeed prove P
(
Ei| ∩j∈J Ec

j

)
≤ ep for any i ∈ [m] and J ⊆ [m] \ {i}, and

shall do so by induction on |Γ(i) ∩ J |.
If |Γ(i) ∩ J | = 0 (including, in particular, the case J = ∅), then by the independence of

Ei and {Ej : j ∈ J}, we have

P
(
Ei| ∩j∈J Ec

j

)
= P(Ei) ≤ p < ep,

as required.
For the induction step, let N = Γ(i)∩J . By the independence of Ei and {Ej : j ∈ J \N},

we have

P
(
Ei| ∩j∈J Ec

j

)
= P

(
Ei| ∩j∈N Ec

j

)
=

P
(
Ei ∩

(
∩j∈NE

c
j

))
P
(
∩j∈NEc

j

) ≤ P(Ei)

P
(
∩j∈NEc

j

) ≤ p

P
(
∩j∈NEc

j

) .
Hence it suffices to show P

(
∩j∈NE

c
j

)
≥ e−1. If N = {j1, . . . , jt}, where t = |N | ≤ |Γ(i)| ≤ d,

P
(
∩j∈NEc

j

)
=

t∏
r=1

(
1− P

(
Ejr | ∩s≤r−1 E

c
js

))
.
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P
(
Ejr | ∩s≤r−1 E

c
js

)
≤ ep ≤ 1/(d+ 1) by the induction hypothesis (which we may apply since

r − 1 < |N |), and so

P
(
∩j∈NEc

j

)
=

t∏
r=1

(
1− P

(
Ejr | ∩s≤r−1 E

c
js

))
≥
(

1− 1

d + 1

)d

≥ e−1,

completing the induction step.

Now it is simple to derive the conclusion of the Local Lemma. Indeed, the probability
that none of the events Ei occurs is

P
(
∩i∈[m]Ei

)
=
∏
i∈[m]

P
(
Ec

i | ∩j<i E
c
j

)
=
∏
i∈[m]

(
1− P

(
Ei| ∩j<i E

c
j

))
≥ (1− ep)m > 0.

(Observe that ep < ep(d + 1) ≤ 1.)

Exercise 2. In class we showed that, for a k-uniform hypergraph F with ∆(L(F)) ≤ 2k−4,
the expected number of recolourings in the algorithmic Local Lemma is O (m logm). Show
that, with more careful analysis, this bound can be greatly improved to O

(
n
k

logm
)
.

Solution: Recall how we obtained the O(m logm) bound. We constructed a rooted ordered
tree to keep track of the recolourings of the randomised colouring algorithm. By showing
that, apart from the top-level calls, each random recolouring of the k elements of a set could
be efficiently encoded in k − 1 bits, we deduced that it is very unlikely that there should be
many lower-level recolourings, and hence in expectation each top-level call leads to O(logm)
lower-level recolourings.

We also showed that at the end of a top-level call for a set F , any set intersecting F is
properly coloured, and hence will not subsequently appear as a top-level call. In particular,
each set can be invoke a top-level call at most once, and hence there are at most m top-level
calls, giving the O(m logm) bound.

However, the previous fact shows that the sets involved in the top-level calls must actually
form a matching. As a matching of k-sets in [n] can have size at most n

k
, we get the improved

O
(
n
k

logm
)

bound on the number of recolourings.

Exercise 3. Recall that the Ramsey number R(k, k) is the smallest n such that any two-
colouring of the edges of Kn must contain a monochromatic copy of Kk.

(i) By colouring edges randomly, show that if
(
n
k

)
21−(k

2) < 1, then R(k, k) > n. Deduce

that R(k, k) ≥ 1
e
√
2
(1 + o(1))k2k/2. [This is from Discrete Math I.]

(ii) Obtain a
√

2-factor improvement of the result in (i) by ‘correcting’ a random colouring

by removing monochromatic cliques: show that for any integer n, R(k, k) > n−
(
n
k

)
21−(k

2).

Deduce that R(k, k) ≥ 1
e

(1 + o(1)) k2k/2.
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(iii) Improve the bound by yet another
√

2-factor with the Local Lemma: show that if

e
(
k
2

)(
n−2
k−2

)
21−(k

2) ≤ 1, then R(k, k) > n. Deduce the bound R(k, k) ≥
√
2
e

(1 + o(1))k2k/2.

Solution:

(i) Given n, and consider colouring the edges of Kn independently, uniformly at random.
For a given set of k vertices, the probability they induce a monochromatic clique is

21−(k
2), since there are two possible colours, and each of the

(
k
2

)
edges will be given

that colour with probability 1/2. As there are
(
n
k

)
sets of k vertices, the expected

number of monochromatic cliques of size k is
(
n
k

)
21−(k

2). By assumption, this is strictly
less than 1, which is only possible if there is some edge-colouring of Kn without any
monochromatic k-clique. Hence we must have R(k, k) > n.

To get a good lower bound on R(k, k), we need to choose n as large as possible while(
n
k

)
21−(k

2) < 1 holds. We can bound the left-hand side by(
n

k

)
21−(k

2) ≤
(ne
k

)k
21−(k

2) = 2

(
ne
√

2

k2k/2

)k

.

Thus if n = 2−1/k

e
√
2
k2k/2 = 1

e
√
2
(1 + o(1))k2k/2, the above expression is equal to 1, and so

we deduce R(k, k) > 1
e
√
2
(1 + o(1))k2k/2.

(ii) For larger n, the expected number of monochromatic cliques will be large, so we cannot
hope to find a monochromatic-k-clique-free Kn by taking a random edge colouring.
However, if the number of monochromatic cliques is not too large, we can remove a
vertex from each such clique to be left with a good colouring on a smaller (but not too
small) number of vertices.

Indeed, if we start with n vertices, and remove one vertex from every monochro-

matic clique, we would on average be left with at least n −
(
n
k

)
21−(k

2) vertices, show-
ing there exists a monochromatic-k-clique-free graph of at least that size, and hence

R(k, k) ≥ n−
(
n
k

)
21−(k

2) ≥ n− 2
(

ne
√
2

k2k/2

)k
.

As before, to get a good bound on R(k, k), we should choose n to maximise this lower
bound. Differentiating with respect to n and setting the derivate equal to 0, we find

2(3−k)/2e

(
ne
√

2

k2k/2

)k−1

= 1,

or

n =
2(k−3)/(2k−2)e−1/(k−1)

e
√

2
k2k/2 ∼ 1

e
(1 + o(1))k2k/2,

giving the required bound on R(k, k).
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(iii) For the final1 improvement, we make use of the Lovász Local Lemma. Once again,
we shall colour the edges of Kn independently and uniformly at random. For each set
K ⊂ V (Kn) of k vertices, let EK be the event that k-clique on K is monochromatic.

As before, we have P(EK) = 21−(k
2).

The event EK is determined by the edges supported on K, and hence is mutually
independent of {EK′ : |K ∩K ′| ≤ 1}, since these events do not depend on any of
the edges of K. Thus the number of events that EK is not mutually independent of
(including EK itself) is at most

(
k
2

)(
n−2
k−2

)
, since we must choose some edge of K that

they have in common, and then can choose the remaining k − 2 vertices freely.

Taking these values as p and d + 1 respectively, it follows from the Local Lemma that
if

e

(
k

2

)(
n− 2

k − 2

)
21−(k

2) ≤ 1,

then with positive probability our random colouring of Kn will not have any monochro-
matic k-cliques, and thus R(k, k) > n.

Asymptotically, the left-hand side is

ek2

(
ne

k − 2

)k−2

2−k(k−1)/2 =
ek2

2

(
ne

(k − 2)2(k+1)/2

)k−2

.

This will be smaller than 1 when n =
√
2
e

(1 + o(1))k2k/2, as claimed.

Exercise 4. The city of London is surrounded by the M25 motorway, a circular road that
directs traffic around the city without congested its inner roads. It is approximately 110
miles long and, as per UK traffic regulations, has 30 streetlights per mile, and thus a total
of 3300 lampposts.

To comply with recent environmental guidelines, the Mayor of London wants to illumi-
nate the M25 with environmentally-friendly lightbulbs that will consume less power while
maintaining adequate light coverage. To find the best lightbulb for the job, he commissions
London’s 300 different lighting firms to submit prototypes for evaluation.

Each firm provides a sample of 11 lightbulbs. To ensure that no firm has all its lightbulbs
in a favourable stretch of the highway, all 3300 lightbulbs are mixed together and then placed,
in some arbitrary order, in the M25’s lampposts. The Mayor intends to keep these lightbulbs
in place for a month and evaluate their efficiency before making a final decision about which
lightbulb to use in the long-term.

1Indeed, despite turning 40 this year, this bound (due to Spencer) remains the best-known lower bound.
While that may seem a long time without progress, I’d like to point out that its been a good 46 years since
the lunar landing, in which time we still haven’t got past first base with the moon.

4



Unfortunately, after a few days, he realises that this experiment is rather expensive, and
decides the test has to be scaled down2. Thus one of each company’s 11 lightbulbs will
be switched off. However, in the interests of public safety, no two neighbouring lightbulbs
should both be switched off, for fear of creating too long a dark stretch on the motorway.

Show that, regardless of how the lightbulbs were initially distributed, it is always possible
to safely turn off one lightbulb from each company.

Solution: As we have not spent much time studying lightbulbs in this course, let us first
rephrase the problem in more familiar terms. We shall make an auxiliary graph G, where
the vertices of G are the lampposts, and edges in G correspond to neighbouring lampposts.
Since the M25 is a circular road, it follows that G will be a cycle with 3300 vertices.

Now we have an arbitrary partition of the vertices, V (G) = t300i=1Vi, where Vi is the set
of lightbulbs from the ith lighting firm. In particular, |Vi| = 11 for all i. We wish to turn
off one lightbulb from each company; that is, some xi ∈ Vi for 1 ≤ i ≤ 300. However, to do
so safely, we must not turn off two neighbouring lightbulbs, and so X = {xi : 1 ≤ i ≤ 300}
must be an independent set. In the parlance of graph theory, such a set X is often referred
to as an independent transversal.

To show that an independent transversal exists, we apply the Lovász Local Lemma. For
each i, 1 ≤ i ≤ 300, let xi be chosen independently and uniformly at random from Vi.
As we want X = {xi : 1 ≤ i ≤ 300} to be an independent set, we will define the event
Ee for each edge e ∈ E(G) of both of the endpoints of e being selected in X. Since X
consists of exactly one vertex from each class Vi, if the endpoints of e belong to the same
class, the event Ee never occurs. Otherwise the endpoints belong to different classes and are
chosen independently, each with probability 1/11, and so the event Ee holds with probability
1/112 = 1/121. Thus, setting p = 1/121, we always have P(Ee) ≤ p.

We must take a little care in determining the dependencies of the events Ee. Note that
if the endpoints of e belong to classes Vi and Vj, then the event is determined solely by
knowing xi and xj. Hence Ee is mutually independent of all events corresponding to edges
spanned by V \ (Vi ∪ Vj).

As G is a cycle, every vertex is incident to 2 edges. Since |Vi ∪ Vj| ≤ |Vi| + |Vj| = 22
(the inequality appears because we might have i = j), there are at most 2 · 22 = 44 edges
involving vertices in Vi ∪ Vj. This includes the edge e itself, so we have d + 1 ≤ 44.

By the Local Lemma, since ep(d + 1) ≤ 44e/121 < 1, it follows that with positive
probability, none of the events Ee occur. In this case, X is an independent set in G, thus
showing the existence of an independent transversal.

2An alternative would have been to raise taxes to fund the project, but he is a proud patriot, and, after
a rather poor showing at the FIFA World Cup 2014, decides his country can ill afford to surrender either of
her two advantages over France: lower taxes and finer food.
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