Recall: Matchings

A matching is a set of (non-loop) edges with no shared endpoints. The vertices incident to an edge of a matching M are saturated by M, the others are unsaturated. A perfect matching of G is matching which saturates all the vertices.

Examples. $K_{n, m}, K_{n}$, Petersen graph, Q_{k}; graphs without perfect matching

A maximal matching cannot be enlarged by adding another edge.

A maximum matching of G is one of maximum size.

Example. Maximum \neq Maximal

Recall: Characterization of maximum matchings

Let M be a matching. A path that alternates between edges in M and edges not in M is called an M alternating path.
An M-alternating path whose endpoints are unsaturated by M is called an M-augmenting path.

Theorem(Berge, 1957) A matching M is a maximum matching of graph G iff G has no M-augmenting path.

Proof. (\Rightarrow) Easy.

(\Leftarrow) Suppose there is no M-augmenting path and let M^{*} be a matching of maximum size.
What is then $M \triangle M^{*}$???
Lemma Let M_{1} and M_{2} be matchings of G. Then each connected component of $M_{1} \triangle M_{2}$ is a path or an even cycle.

For two sets A and B, the symmetric difference is $A \triangle B=$ $(A \backslash B) \cup(B \backslash A)$.

Recall: Hall's Condition and consequences

Theorem (Marriage Theorem; Hall, 1935) Let G be a bipartite (multi)graph with partite sets X and Y. Then there is a matching in G saturating X iff $|N(S)| \geq|S|$ for every $S \subseteq X$.

Proof. (\Rightarrow) Easy.

(\Leftarrow) Not so easy. Find an M-augmenting path for any matching M which does not saturate X.
(Let U be the M-unsaturated vertices in X. Define

$$
\begin{aligned}
T & :=\{y \in Y: \exists M \text {-alternating } U, y \text {-path }\}, \\
S & :=\{x \in X: \exists M \text {-alternating } U, x \text {-path }\} .
\end{aligned}
$$

Unless there is an M-augmenting path, $S \cup U$ violates Hall's condition.)

Corollary. (Frobenius (1917)) For $k>0$, every k regular bipartite (multi)graph has a perfect matching.

Recall: Application: 2-Factors

A factor of a graph is a spanning subgraph. A k-factor is a spanning k-regular subgraph.

Every regular bipartite graph has a 1-factor.
Not every regular graph has a 1 -factor.
But...
Theorem. (Petersen, 1891) Every $2 k$-regular graph has a 2 -factor.

Proof. Use Eulerian cycle of G to create an auxiliary k-regular bipartite graph H, such that a perfect matching in H corresponds to a 2-factor in G.

Recall: Graph parameters

$\alpha^{\prime}(G)=$ size of the largest matching in G
A vertex cover of G is a set $Q \subseteq V(G)$ that contains at least one endpoint of every edge.
$\beta(G)=$ size of the smallest vertex cover in G
Claim. For every graph $G, \beta(G) \geq \alpha^{\prime}(G)$.
Theorem. (König (1931), Egerváry (1931)) If G is bipartite then $\beta(G)=\alpha^{\prime}(G)$.
Proof of König's Theorem: For any minimum vertex cover Q, apply Hall's Condition to match $Q \cap X$ into $Y \backslash Q$ and $Q \cap Y$ into $X \backslash Q$.

Remarks

1. König's Theorem \Rightarrow For bipartite graphs there always exists a vertex cover proving that a particular matching of maximum size is really maximum.
2. This is NOT the case for general graphs: C_{5}.

How to find a maximum matching in bipartite graphs?

Augmenting Path Algorithm

Input. A bipartite graph G with partite sets X and Y, a matching M in G.

Output. EITHER an M-augmenting path OR a certificate (a cover of the same size) that M is maximum.

Idea. Let U be set of unsaturated vertices in X. Explore M-alternating paths from U, letting $S \subseteq X$ and $T \subseteq Y$ be the sets of vertices reached. As a vertex is reached, record the previous vertex on the M-alternating path from which it was reached.
Mark vertices of S that have been fully explored for path extensions (say, put them into a set Q).

Initialization. $S=U, Q=\emptyset$, and $T=\emptyset$.

Iteration.

IF $Q=S$ THEN
stop and report that M is a maximum matching and $T \cup(X \backslash S)$, is a cover of the same size.

ELSE

select $x \in S \backslash Q$ and
FORALL $y \in N(x)$ with $x y \notin M$ DO
IF y is unsaturated, THEN
stop and report an M-augmenting path
from U to y.
ELSE

$$
\exists w \in X \text { with } y w \in M . \text { Update }
$$

$$
T:=T \cup\{y\}(y \text { is reached from } x)
$$

$$
S:=S \cup\{w\}(w \text { is reached from } y)
$$

update $Q:=Q \cup\{x\}$
iterate.

Theorem. Repeatadly applying the Augmenting Path Algorithm to a bipartite graph produces a maximum matching and a minimum vertex cover.
If G has n vertices and m edges, then this algorithm finds a maximum matching in $O(n m)$ time.

Proof of correctness

If Augmenting Path Algorithm does what it supposed to, then after at most $n / 2$ application we can produce a maximum matching.
Why does the APA terminate? It touches each edge at most once. Hence running time is $O(n m)$.

What if an M-augmenting path is returned? It is OK, since y is an unsaturated neighbor of $x \in S$, and x can be reached from U on an M-alternating path.

What if the APA returns M as maximum matching and $T \cup(X \backslash S)$ as minimum cover?
Since $S=Q$, all edges leaving S were explored, so there is no edge between S and $Y \backslash T$.

- Hence $T \cup(X \backslash S)$ is indeed a cover.

$$
\text { - }|M|=|T|+|X \backslash S| \quad \text { (By selection of } S \text { and } T \text {.) }
$$

Key Lemma If, in any graph, a cover and a matching have the same size, then they are both optimal.

$$
|M| \leq \alpha^{\prime}(G) \leq \beta(G) \leq|T \cup(X \backslash S)|=|M| .
$$

How to find a maximum weight matching in a bipartite graph?

In the maximum weighted matching problem a nonnegative weight $w_{i, j}$ is assigned to each edge $x_{i} y_{j}$ of $K_{n, n}$ and we seek a perfect matching M to maximize the total weight $w(M)=\sum_{e \in M} w(e)$.
With these weights, a (weighted) cover is a choice of labels u_{1}, \ldots, u_{n} and v_{1}, \ldots, v_{n}, such that $u_{i}+v_{j} \geq$ $w_{i, j}$ for all i, j. The cost $c(u, v)$ of a cover (u, v) is $\sum u_{i}+\sum v_{j}$. The minimum weighted cover problem is that of finding a cover of minimum cost.

Duality Lemma For a perfect matching M and a weighted cover (u, v) in a bipartite graph $G, c(u, v) \geq w(M)$. Also, $c(u, v)=w(M)$ iff M consists of edges $x_{i} y_{\pi(i)}$ such that $u_{i}+v_{\pi(i)}=w_{i, \pi(i)}$ for some permutation $\pi \in S_{n}$. In this case, M and (u, v) are both optimal.

The algorithm

The equality subgraph $G_{u, v}$ for a weighted cover (u, v) is the spanning subgraph of $K_{n, n}$ whose edges are the pairs $x_{i} y_{j}$ such that $u_{i}+v_{j}=w_{i, j}$. In the cover, the excess for i, j is $u_{i}+v_{j}-w_{i, j}$.

Hungarian Algorithm

Input. A matrix $\left(w_{i, j}\right)$ of weights on the edges of $K_{n . n}$ with partite sets X and Y.

Idea. Iteratively adjusting a cover (u, v) until the equality subgraph $G_{u, v}$ has a perfect matching.

Initialization. Let $u_{i}=\max \left\{w_{i, j}: j=1, \ldots, n\right\}$ and $v_{j}=0$.

Iteration.

Form $G_{u, v}$ and use APA to find a maximum matching M and minimum vertex cover $Q=T \cup R$, where $R=X \cap Q$ and $T=Y \cap Q$.
IF M is a perfect matching, THEN
stop and report M as a maximum weight matching and (u, v) as a minimum cost cover
ELSE
$\epsilon:=\min \left\{u_{i}+v_{j}-w_{i, j}: x_{i} \in X \backslash R, y_{j} \in Y \backslash T\right\}$ Update u and v :

$$
\begin{aligned}
& u_{i}:=u_{i}-\epsilon \text { if } x_{i} \in X \backslash R \\
& v_{j}:=v_{j}+\epsilon \text { if } y_{j} \in T
\end{aligned}
$$

Iterate
Remarks. By properties of APA:

- $|Q|=|M|$, no M-edge is covered by twice by Q
- $T=\{y \in Y$: there is an M-alternating (U, y)-path $\}$
- $R=\{x \in X$: there is NO M-alternating (U, x)-path $\}$ where $U=\{x \in X: x$ is M-unsaturated $\}$.

Theorem The Hungarian Algorithm finds a maximum weight matching and a minimum cost cover.

The Assignment Problem - An example

$$
\left(\begin{array}{lllll}
1 & 2 & 3 & 4 & 5 \\
6 & 7 & 8 & 7 & 2 \\
1 & 3 & 4 & 4 & 5 \\
3 & 6 & 2 & 8 & 7 \\
4 & 1 & 3 & 5 & 4
\end{array}\right)
$$

Excess Matrix
Equality Subgraph
5
8
5
5
8
5 $\left(\begin{array}{lllll}0 & 0 & 0 & 0 & 0 \\ 4 & 3 & 2 & 1 & 0 \\ 2 & 1 & 0 & 1 & 6 \\ 4 & 2 & 1 & 1 & 0 \\ 5 & 2 & 6 & 0 & 1 \\ 1 & 4 & 2 & 0 & 1 \\ & & & T & T\end{array}\right)$

$$
\epsilon=1
$$

$\epsilon=1$
3
7
3
6
3 $\left(\begin{array}{lllll}1 & 0 & 1 & 2 & 2 \\ 3 & 1 & 1 & 1 & 0 \\ 2 & 0 & 0 & 2 & 7 \\ 3 & 0 & 0 & 1 & 0 \\ 4 & 0 & 5 & 0 & 1 \\ 0 & 2 & 1 & 0 & 1\end{array}\right)$

DONE!!

The Duality Lemma states that if $w(M)=c(u, v)$ for some cover (u, v), then M is maximum weight.

We found a maximum weight matching (transversal). The fact that it is maximum is certified by the indicated cover, which has the same cost:

$$
\begin{aligned}
& \begin{array}{l}
\\
3 \\
7 \\
3 \\
6 \\
3
\end{array}\left(\begin{array}{lllll}
1 & 0 & 1 & 2 & 2 \\
1 & 2 & 3 & 4 & 5 \\
6 & 7 & 8 & 7 & 2 \\
1 & 3 & 4 & 4 & 5 \\
3 & 6 & 2 & 8 & 7 \\
4 & 1 & 3 & 5 & 4
\end{array}\right) \\
& w(M)=5+7+4+8+4=28= \\
& =1+0+1+2+2+ \\
& 3+7+3+6+3=c(u, v)
\end{aligned}
$$

Hungarian Algorithm - Proof of correctness

Proof. If the algorithm ever terminates and $G_{u, v}$ is the equality subgraph of a (u, v), which is indeed a cover, then M is a m.w.m. and (u, v) is a m.c.c. by Duality Lemma.

Why is (u, v), created by the iteration, a cover?
Let $x_{i} y_{j} \in E\left(K_{n, n}\right)$. Check the four cases.
$x_{i} \in R, \quad y_{j} \in Y \backslash T \Rightarrow u_{i}$ and v_{j} do not change.
$x_{i} \in R, \quad y_{j} \in T \quad \Rightarrow \quad u_{i}$ does not change
v_{j} increases.
$x_{i} \in X \backslash R, \quad y_{j} \in T \quad \Rightarrow \quad u_{i}$ decreases by ϵ, v_{j} increases by ϵ.
$x_{i} \in X \backslash R, \quad y_{j} \in Y \backslash T \Rightarrow u_{i}+v_{j} \geq w_{i, j}$ by definition of ϵ.

Why does the algorithm terminate?

- \# of vertices reached from U by M-alternating paths grows
(only edges between S and T can become non-edges during an iteration and these do not participate in such paths.)
- after $\leq n$ iteration an M-unsaturated $y \in Y$ is reached with a (U, y)-augmenting path
- max matching gets larger; can happen $\leq n$-times
- after $\leq n^{2}$ iteration $G_{u, v}$ has perfect matching

