2.2. Coloring hypergraphs 17

that actual games hardly ever last to the boundary of the chequered exercise book
page they are customarily played on, not even close. Still for the “theory” of the
game, this extension of the board size makes a huge difference: for one game we
know the solution, for the other we do not. The 15-by-15 FP winning strategy of
course implies that Maker wins in the Maker-Breaker version of the game. This
in turn implies that Maker also has a winning strategy on the infinite board.
Curiously, it is still not known whether FP can win the strong 5-in-a-row game on
the infinite board. Why cannot FP just apply Allis’ 15-by-15 FP-strategy out of the
box to occupy his winning set on the infinite board? Partly because of the dual task
of simultaneous offense/defense FP has to perform in a strong game. Allis’ strategy
will certainly create a 5-in-a-row eventually, while preventing SP from creating his
own on the 15-by-15 board, but along the way it might also lead to a 4-in-a-row of
SP at the boundary of the 15-by-15 board. This would not concern FP in the finite
game, but in the infinite game he would be forced to play outside the 15-by-15
board and abandon his winning strategy. This is yet another manifestation of the
extra set paradox of the first chapter, or rather of the difficulties it can cause.

It is widely believed that the 5-in-row game on the infinite board is FP’s win,
while 6-in-a-row is a draw. However, it is only known that 4-in-a-row is FP’s win
(a trivial exercise) and that 8-in-a-row is a draw. In Section 2.4.2 we will see a
proof that 40-in-a-row is a draw.

2.2 Coloring hypergraphs

Let ()k() :={K C X : |[K| =k} the set of all k-element subsets of X.
A hypergraph (X, F) is called k-uniform if F C ()k() consists only of k-element
subsets. Sometimes we identify the hypergraph with its edge set F.

A function f : X — {red,blue} is called a proper 2-coloring of the hypergraph
(X, F) if every member of F has both a red and a blue colored vertex (that is,
no edge is monochromatic). A hypergraph (X, F) is called 2-colorable if it has a
proper 2-coloring.

For a proper 2-coloring to exist we obviously need at least two vertices in each
edge, so we assume k > 2. For example a k-uniform hypergraph with exactly
two distinct edges always has a proper 2-coloring: in each of the two edges take a
vertex which is not part of the other edge and color it red, and color the rest of the
vertices blue. It is a famous open problem to determine for each k£ the smallest
number m(k) of edges in a non-2-colorable k-uniform hypergraph. The triangle
graph shows that m(2) = 3.

game the players’ goal is still to be the first to occupy a winning set fully, and a draw means that
none of the players wins, hence the game goes on infinitely long. Strategy stealing still applies, so
SP can only hope for a draw. In the Maker-Breaker game, Breaker wins if Maker does not occupy
a winning set. This is not any more equivalent to Breaker putting his mark in every winning set:
the point is that Breaker can force the game to last infinitely long without Maker winning.

18 Chapter 2. Maker-Breaker Games

The following result of Erdés [27], one of the first applications of the probabilistic
method, provides an exponential lower bound.

Claim 2.2.1. If |F| < 281, then F is 2-colorable. In particular, m(k) > 2F~1,

Proof. Take a random 2-coloring f : V(F) — {red,blue}. That is: color all
vertices € V(F) independently, uniformly at random such that

Pr[f(z) = red] = % = Pr[f(x) = blue].

For each A € F, let Y4 be the characteristic random variable of the event that A
is monochromatic. That is Y4 = 1 if A is monochromatic, otherwise Y4 = 0. Now,

S

AEF

E[#of monochromatic edges of F] = E = Z E[Y4] = 2',;7-]1 <1

AeF

The random variable) , » Y takes only non-negative integer values, so its aver-
age can only be strictly less than 1 if it also takes the value 0 at least once. Hence
for sure, not just with some probability, but with 100% certainty, there exists a
2-coloring of F without monochromatic edges. O

Remark 2.2.2. The classical term for a hypergraph F being 2-colorable is that F
has property B.

Remark 2.2.3. The best known lower bound for m(k), due to Radhakrishnan
and Srinivasan [76], is of the order 2¥./k/logk. Their proof also starts with a
random coloring of the vertices, but continues with a refined randomized recoloring
procedure, which fixes the errors (the monochromatic sets). The best known upper
bound, obtained by considering a random k-uniform hypergraph on roughly k2
vertices, is of the order 2¥k%. Tt was proved by Paul Erdés [28] around the same
time “Oh Pretty Woman” topped the US charts: not exactly yesterday. Improving
these bounds remain intriguing open problems.

The probabilistic method is a great tool to prove the existence of special objects,
including, as the case may be, a coloring of the vertices of a hypergraph with red
and blue so that in each hyperedge both red and blue occur. In our computer-
oriented world, however, a proof of the existence of something is of little value:
We do not just want to know that this book exists and that some people actually
own a copy, but we want to hold one in our hands. With such worldly possessions,
this is usually easy to accomplish with enough money at hand. However, in the
case of a proper coloring of a hypergraph, the existence of which is proved by the
above claim, we need something else.

When do we hold a 2-coloring of a hypergraph in our hand? We of course want
that, given the hypergraph in some form (say, by its incidence matrix) we can
construct a proper coloring, potentially with the help of a computer. So we need
an algorithm for this task. This is easy, you might say, once we know the coloring

2.3. The Erdés-Selfridge Criterion 19

exists: the number of vertices is finite, the hypergraph is finite, so we could look
at all possible 2-colorings of the vertex set and check for each whether it is proper.
This solution, however, is not really satisfying, as the number of all colorings is
21X and no matter how super a computer you own now (or will own, ever) it will
never even get close to finishing the check within the lifetime of our universe, on
even relatively small problems where the vertex set X is, say, of size 100.

In computer science one usually accepts algorithms as theoretically “fast” when
their running time is polynomial in the size of the input. Is there a polynomial
time algorithm which finds a proper 2-coloring of any given input hypergraph from
Claim 2.2.17

Based on the proof of Claim 2.2.1, we can suggest a natural randomized algorithm:
Color the vertices independently, uniformly at random and then check whether the
obtained coloring is proper. If the answer is YES, then output this coloring and
terminate, otherwise repeat the procedure with a new random coloring. Generating
a random assignment involves |X| calls to a uniformly random source and the
checking involves going through the colors of the k vertices of each of the |F|
hyperedges. Altogether this represents |X| + k|F| = O(|X]| - |F|) steps, which is
just quadratic in the input data.

Assuming |F| < 2*72, only a factor 2 stronger assumption than the one in
Claim 2.2.1, we find that the probability of failure of the random coloring pro-
ducing a proper coloring is at most %, by Markov’s Inequality. After just one
hundred iterations, which shows up in the running time just as a multiplicative
constant factor 100, the probability of failure to produce a proper coloring is at
most 21%, orders of magnitude smaller than the probability of hardware failure of
your supercomputer resulting in an incorrect outcome.

Although, for all practical purposes, such an algorithm is satisfactory, still there
is the dependence on a perfectly uniform random source and the loss of the con-
stant factor 2 compared to the existence result of the claim. The question remains
whether there is an efficient and possibly deterministic way to find a proper col-
oring whose existence is promised by Claim 2.2.1.

The answer to this question is also YES and it was given in the context of positional
games by Erd6s and Selfridge.

2.3 The Erdos-Selfridge Criterion

The following proposition establishes the connection between 2-colorings and
Maker-Breaker games. The argument is analogous to the one we saw in the proof
of Theorem 1.3.2 of Chapter 1.

Proposition 2.3.1. F is a Breaker’s win = F is 2-colorable.

20 Chapter 2. Maker-Breaker Games

Proof. Let us sit two players, FP and SP, to play on the board V(F) and give
both of them the winning strategy S of Breaker for the game F (which exists by
assumption). More precisely, give S to SP, as Breaker plays second in a Maker-
Breaker game, and give FP the winning strategy of Breaker as a first player, which
exists by Proposition 2.1.6. Make both players play according to this strategy, such
that FP colors his board elements with red and SP colors his with blue. Since FP
plays according to a strategy which is a winning one for Breaker, he will put a
red mark in every winning set by the end of the game. SP also plays according
to Breaker’s winning strategy and hence by the end of the game a blue vertex as
well will be in every winning set. Looking at the board at the end of the game,
we see that every winning set contains both red and blue vertices: the coloring
created by the two players during their play is proper. U

By this proposition, the following fundamental result of Erdds and Selfridge is a
strengthening of Claim 2.2.1. From its proof it will be obvious how to devise a very
efficient deterministic algorithm which finds a proper 2-coloring of the underlying
hypergraph.

Theorem 2.3.2. Let F be a k-uniform hypergraph. Then
|F| < 287! = F is a Breaker’s win.

This theorem is a corollary of the following more general one, dealing not only
with uniform hypergraphs.

Theorem 2.3.3 (Erdds-Selfridge Criterion, [31]). Let F be a hypergraph. Then

1
Z 214l < 3 = F is a Breaker’s win.
AeF

Proof. Imagine yourself in the middle of a play when Breaker must decide which
unoccupied (i.e., uncolored) element of the board to take (i.e., color with blue).
Each winning set which does not yet contain Breaker’s blue mark represents a
potential danger for Breaker. The more elements Maker has already colored red
from this winning set, the larger danger it represents for Breaker. Having no better
idea, our motivation for the quantitative danger of a hyperedge comes from a
probabilistic view: instead of clever players coloring the elements, we imagine that
each remaining element will be colored with red or blue uniformly at random. We
set the current danger value of A to be the probability that A is then fully occupied
by Maker (i.e., monochromatic red). Hence the danger value of a winning set A
not yet touched by Breaker is defined to be 9-(# of unoccupied elements in A),
while the danger of those already having a blue vertex is 0. We define the danger
of a hypergraph H as the sum of the dangers of its edges, that is,

danger(H) = Z 9~ 1AM

AeH
ANB=0

2.3. The Erdés-Selfridge Criterion 21

where M C X and B C X are the sets of vertices occupied at the moment by
Maker and Breaker, respectively. Note that this is exactly the expected number
of monochromatic red edges of H after a random 2-coloring of the vertices in
X \ (M U B). By our condition, at the beginning of the game

1
danger(F) = Z 2714l < 7
AeF

Let M; = {m,...,m;} be the set of vertices of Maker after round ¢ and let
Bi—1 = {b1,...,bi_1} be the set of vertices of Breaker after round ¢ — 1. The
actual multihypergraph of interest immediately after Maker’s ith move has

e board X; = X \ (B;—1 UM;) and
e family of winning sets F; = {A\ M; : A€ F,ANB;_1 =0}.

These are the still available vertices of the board and the leftover winning sets
which do not yet contain a mark of Breaker. We would like to emphasize that F;
is a multiset: For each member A € F with the property that AN B;_; = 0 we
create a member A\ M; € F; (even if we create the same set more than once).

With his first move, Maker increases the danger of each edge containing m; by a
factor of 2, while the rest of the edges keep their old danger value. Hence

danger(F;) < 1.

Breaker will try to adhere to the simple goal of keeping the danger below 1. His
strategy is to be as greedy as possible. In each round 4, he will occupy a vertex b;
whose occupation decreases the danger of the hypergraph F; the most. Formally,
this is a vertex b; € X; which maximizes Zze AcF, 2= 141 over all vertices z € X,
because this is the contribution to the total hypergraph danger of exactly those
edges whose danger value will be zeroed after Breaker takes his vertex. (In case
there are several eligible vertices, Breaker picks one arbitrarily.)

After Maker also takes his vertex m;y1, the danger of the hypergraph increases,
because all those edges which contain Maker’s choice double their danger. Then
the overall change in the danger of the hypergraph is the following:

danger(F;+1) = danger(F;) — Z 27141 ¢ Z 2~ Il Z 9~ lAl

AeF; AeF; AeF;
b, €A mi+1€A bi,mi+1€A
< danger(F;) — E 9~ Il
AeF;
b; ;M1 €A

< danger(F;).

Notice that in the first equality we added the danger values of all those edges
which contain m;; in order to double their current danger values. This we should

22 Chapter 2. Maker-Breaker Games

not have done, however, for those edges which also contain b;, since they already
have danger 0 after Breaker’s move. We correct this error by subtracting the
danger of those edges which contain both m;;1 and b;. The first inequality then
follows because of how b; was chosen: m;;; was still available for Breaker to
choose in round 4, but Breaker still chose b;, so the sum of the dangers of the
edges containing b; must have been at least as large as the sum of the dangers of
those edges containing m;41.

So if Breaker follows his strategy, for every i we have
danger(F;) < danger(F;) < 1. (2.1)

If Maker still won the game, say in round 4, then we would have () € F; by the
definition of F;. Now this alone would have contributed 2~1? = 1 to the danger
of F;, a contradiction to (2.1).

So playing according to this strategy, Breaker must have won the game. O

Remark 2.3.4. It is easy to see that the greedy strategy of the above proof also
gives an efficient deterministic algorithm for Breaker to determine his next move.
In each round he would have to calculate > o7, 2711 for each z € X; and
choose the largest one. This is the checking of at most |X| sums of at most |F|
terms each, a calculation of order |X| - |F| steps, polynomial in the input size.

Remark 2.3.5. The general method of the proof (taking expectation conditioned
on the current situation) is of fundamental importance in theoretical computer sci-
ence. It is the first instance of the method of conditional expectations, the very first
technique to efficiently derandomize randomized algorithms, which is applicable
in many, much more general scenarios (see, e.g., [3, 68]).

Remark 2.3.6. The following construction shows that the Erdés-Selfridge Criterion
(Theorem 2.3.2) is best possible for every positive integer k. It describes a k-
uniform hypergraph with exactly 2¥~1 edges which is a Maker’s win. Let X =
{r} U{Ly,..., L1} U{Ry,...,Rr—1} and let F contain all subsets of size k
which

(1) contain the vertex r, and
(2) contain exactly one element of each pair {L;, R;}.

This is a k-uniform hypergraph with exactly 2¥~! edges. Maker can win as follows.
To start, he takes the vertex r and then in the next £ — 1 moves he acts according
to a pairing strategy. That is, he always takes the sibling of what Breaker took
previously: if Breaker took L;, Maker takes R;, if Breaker took R;, Maker takes
L;. At the end then Maker owns one of each pair {L;, R;} as well as the element
r. Since each set of such type is in the family F, Maker won the game.

An alternative interpretation of this construction uses a full binary tree of depth
k — 1. The vertex set of the tree is the board and the winning sets are the vertex
sets of the 2°~1 root-to-leaf paths. Maker starts by taking the root vertex r and

2.4. Applications of the Erdés-Selfridge Criterion 23

then builds a path by always taking a child of his previously taken vertex v, which
does not contain any vertices of Breaker in its subtree. By induction at least one
of the children of v is such, and hence Maker occupies a root-to-leaf path in k
moves. The choices L;, R; of the previous construction translate in round i for
Maker to take the left or right child of v, respectively. Breaker taking a vertex in
round 4 which is not in the right subtree of v can be interpreted as if he took L;,
while otherwise he took R;.

Remark 2.3.7. The converse of the Erdés-Selfridge Theorem is trivially not true:
if F is a k-uniform hypergraph and |F| > 2*~!, then it is not necessarily the case
that F is a Maker’s win. (Just consider 2¥~! disjoint hyperedges.) Some sort of
a weaker converse, involving a couple of extra factors, is formulated in the next
theorem.

Theorem 2.3.8 (Maker’s Win Criterion; Beck). If F is a k-uniform hypergraph,
then

\F| > 2873 . Ay(F) - |X| = F is a Maker’s win,
where Ag(F) = max{deg(x,y) : x,y € X,z # y} and deg(z,y) =|[{A € F:z,y €
A}
Proof. Exercise. U

2.4 Applications of the Erdos-Selfridge Criterion

2.4.1 Clique Game

In the clique building game K, (n) the board is the edge set F(K,,) = ([Z]) of the
complete graph on the vertex set [n] := {1,2,...,n} and the family of winning
sets is {(g) :Q Cn),|Q| = q}, containing the edge sets of g-cliques. Let g(n) be
the largest integer ¢ such that Maker wins Kx, (n).

Theorem 2.4.1.)
3 logyn < g(n) < 2logy n.

Proof. If n > R(q,q), then, as discussed in the first chapter, not only Maker, but
also FP of the strong game has a winning strategy. Indeed, draw is not an option
because the board will contain a monochromatic clique of order ¢, and Strategy
Stealing shows that SP does not have a winning strategy. In particular, Maker can
build a clique of size %log2 n, since R(q,q) < 49.

For the other direction, we use the Erdés-Selfridge Criterion to show that Breaker
has a winning strategy. The hypergraph of the clique game K, (n) is (g)—uniform

and has (Z) edges. Substituting into the Erdés-Selfridge Criterion, we get that

Breaker wins if (Z) < 2(3)_1, that is, for example, if

— <927 a4,

q

ne g=1_1
2

	Contents
	Preface
	Chapter 1 Introduction
	1.1 Examples of positional games
	1.2 General framework
	1.3 Strong games
	1.4 Exercises

	Chapter 2 Maker-Breaker Games
	2.1 Maker-Breaker positional games
	2.2 Coloring hypergraphs
	2.3 The Erd.os-Selfridge Criterion
	2.4 Applications of the Erd.os-Selfridge Criterion
	2.4.1 Clique Game
	2.4.2 n-in-a-row

	2.5 Exercises

	Chapter 3 Biased Games
	3.1 Background and motivation
	3.2 General criteria for biased games
	3.3 The threshold bias of the connectivity game
	3.4 Isolating a vertex and box games
	3.4.1 Box games

	3.5 Probabilistic intuition
	3.6 Exercises

	Chapter 4 Avoider-Enforcer Games
	4.1 Misère is everywhere. . .
	4.2 Bias (non-)monotonicity and two sets of rules
	4.3 A couple of general criteria
	4.4 Some games whose losing sets are spanning graphs
	4.5 Another encounter of non-planarity
	4.6 Games with losing sets of constant size
	4.7 Exercises

	Chapter 5 The Connectivity Game
	5.1 Probabilistic intuition
	5.2 The Connectivity Game
	5.3 The Minimum Degree Game
	5.4 Exercises

	Chapter 6 The Hamiltonicity Game
	6.1 Problem statement, history
	6.2 The result
	6.3 Expanders, rotations and boosters
	6.4 Analysis of the minimum degree game and its consequences
	6.5 The proof
	Stage I – creating an expander.
	Stage II – creating a connected expander.
	Stage III – completing a Hamilton cycle.

	6.6 Concluding remarks
	6.7 Exercises

	Chapter 7 Fast and Strong
	7.1 Introduction
	7.2 Winning weak games quickly
	7.2.1 The weak perfect matching game
	7.2.2 The weak Hamilton cycle game
	7.2.3 The weak k-connectivity game

	7.3 Explicit winning strategies in strong games
	7.3.1 The strong perfect matching game
	7.3.2 The strong Hamilton cycle game
	7.3.3 The strong k-connectivity game

	7.4 Exercises

	Chapter 8 Random Boards
	8.1 Preliminaries
	8.2 Randomness in positional games
	8.3 Threshold biases and threshold probabilities
	8.4 Probabilistic intuition revisited
	8.5 Hitting time of Maker’s win
	8.6 Exercises

	Chapter 9 The Neighborhood Conjecture
	9.1 Prologue
	9.2 The Local Lemma
	9.3 The Neighborhood Conjecture
	9.4 Game hypergraphs from trees
	9.5 How far can (k, d)-trees take us?
	9.6 Application to satisfiability
	9.7 Towards improved (k, d)-trees
	9.7.1 Leaf-vectors and constructibility
	9.7.2 Not all parents are the same: operations on leaf-vectors

	9.8 Further Applications
	9.8.1 European Tenure Game
	9.8.2 Searching with lies

	9.9 Exercises

	Bibliography

