Recall: Leaves, trees, forests...

A graph with no cycle is acyclic. An acyclic graph is
called a forest.

A connected acyclic graph is a
A leaf (or pendant vertex) is a vertex of degree 1.

A spanning subgraph of GG is a subgraph with vertex
set V(G).

A spanning tree is a spanning subgraph which is a
tree.

Examples. Paths, stars



Recall: Properties of trees

Lemma. T is a tree, n(T") > 2 = T contains at least

two leaves.
Deleting a leaf from a tree produces a tree.

Theorem (Characterization of trees) For an n-vertex
graph G, the following are equivalent

1. (G is connected and has no cycles.
2. (G is connected and has n — 1 edges.
3. GG hasn — 1 edges and no cycles.

4. For each u,v € V(G), G has exactly one u, v-
path.

Corollary.
() Every edge of a tree is a cut-edge.

(42) Adding one edge to a tree forms exactly one cy-
cle.

(#77) Every connected graph contains a spanning tree.
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Recall: The edge-exchange lemma

Proposition. Let 7" and 7" be spanning trees of a

connected graph G.

Then for every cc E(T) \ E(T"), there exists an ed-
ge ¢’'e E(T") \ E(T), such that both T" — ¢ 4 ¢’ and
T' 4+ e — ¢’ are spanning trees of G.



How to build the cheapest road network?____

G Is a weighted graph if there is a weight function
w: E(G) = R.

Weight w(H) of a subgraph H C G is defined as
w(H) = > w(e).

ecE(H)

Example:




Kruskal's Algorithm

Kruskal’s Algorithm

Input: connected graph G, weight function w : E(G) —
R, w(e1) <w(ez) < ... <w(em).

Idea: Maintain a spanning forest H of G. At each ite-
ration try to enlarge H by an edge of smallest weight.

Initialization: V(H) « V(G), E(H) «+ 0,1+ 1

WHILE 1 < n
e < ¢;
IF e goes between two components of H THEN
update H + H + ¢
IF H is connected THEN
stop and return H
14+—1+ 1

Theorem. In a connected weighted graph G, Krus-
kal’'s Algorithm constructs a minimum-weight spanning
tree.



Proof of correctness of Kruskal's Algorithm__

Proof. T' is the graph produced by the Algorithm.
E(T) ={f1, -, fam1tandw(f1) < - <w(fp-1)-

Easy: 7' is spanning (already at initialization!)
T is a connected (by termination rule) and has no cy-
cle (by iteration rule) = T'is a tree.

But WHY is 7" min-weight?

Let 7™ be an arbitrary spanning tree. Let 5
be the largest index such that fq,..., f; € E(17).

If 7 =n — 1, then = T'. Done.



Proof of Kruskal, cont'd

Ifj <n—1,then fj41 & E(1™).
There is an edge e € E(7"), such that
T = — e+ fj41 Is aspanning tree.

(1) w(T*) —w(e) + w(fjr1) = w(T*) > w(T™)
So w(fj41) = w(e).

(i) Key: When we selected f;1; into T', e was also
available. (The addition of e wouldn’t have created a
cycle, since f1,..., fj,e€ E(17).)

So w(fj41) < w(e).

Combining: w(e) = w(fj41), .. w(T™) = w(1").
Thus 7" is min-weight spanning tree and it contains
a longer initial segment of the edges of T', than 7™ did.

Repeating this procedure at most (n — 1)-times, we
transform any min-weight spanning tree into 7.



