
Recall: Leaves, trees, forests...

A graph with no cycle is acyclic. An acyclic graph is
called a forest.

A connected acyclic graph is a tree.

A leaf (or pendant vertex) is a vertex of degree 1.

A spanning subgraph of G is a subgraph with vertex
set V (G).

A spanning tree is a spanning subgraph which is a
tree.

Examples. Paths, stars

1



Recall: Properties of trees

Lemma. T is a tree, n(T ) ≥ 2⇒ T contains at least
two leaves.
Deleting a leaf from a tree produces a tree.

Theorem (Characterization of trees) For an n-vertex
graph G, the following are equivalent

1. G is connected and has no cycles.

2. G is connected and has n− 1 edges.

3. G has n− 1 edges and no cycles.

4. For each u, v ∈ V (G), G has exactly one u, v-
path.

Corollary.
(i) Every edge of a tree is a cut-edge.

(ii) Adding one edge to a tree forms exactly one cy-
cle.

(iii) Every connected graph contains a spanning tree.

2



Recall: The edge-exchange lemma

Proposition. Let T and T ′ be spanning trees of a
connected graph G.
Then for every e∈ E(T ) \ E(T ′), there exists an ed-
ge e′∈ E(T ′) \ E(T ), such that both T − e+ e′ and
T ′+ e− e′ are spanning trees of G.

3



How to build the cheapest road network?

G is a weighted graph if there is a weight function
w : E(G)→ IR.

Weight w(H) of a subgraph H ⊆ G is defined as

w(H) =
∑

e∈E(H)

w(e).

Example:

5

7

10

1

11

12

3

4

9

28

6

4



Kruskal’s Algorithm

Kruskal’s Algorithm

Input: connected graph G, weight function w : E(G)→
IR, w(e1) ≤ w(e2) ≤ ... ≤ w(em).

Idea: Maintain a spanning forest H of G. At each ite-
ration try to enlarge H by an edge of smallest weight.

Initialization: V (H)← V (G), E(H)← ∅, i← 1

WHILE i ≤ n

e← ei
IF e goes between two components of H THEN

update H ← H + e

IF H is connected THEN

stop and return H

i← i+1

Theorem. In a connected weighted graph G, Krus-
kal’s Algorithm constructs a minimum-weight spanning
tree.

5



Proof of correctness of Kruskal’s Algorithm

Proof. T is the graph produced by the Algorithm.
E(T ) = {f1, . . . , fn−1} and w(f1) ≤ · · · ≤ w(fn−1).

Easy: T is spanning (already at initialization!)
T is a connected (by termination rule) and has no cy-
cle (by iteration rule)⇒ T is a tree.

But WHY is T min-weight?

Let T ∗ be an arbitrary min-weight spanning tree. Let j
be the largest index such that f1, . . . , fj ∈ E(T ∗).

If j = n− 1, then T ∗ = T . Done.

6



Proof of Kruskal, cont’d

If j < n− 1, then fj+1 /∈ E(T ∗).
There is an edge e ∈ E(T ∗), such that
T ∗∗ = T ∗ − e+ fj+1 is a spanning tree.

(i) w(T ∗) − w(e) + w(fj+1) = w(T ∗∗) ≥ w(T ∗)
So w(fj+1) ≥ w(e).

(ii) Key: When we selected fj+1 into T , e was also
available. (The addition of e wouldn’t have created a
cycle, since f1, . . . , fj, e ∈ E(T ∗).)
So w(fj+1) ≤ w(e).

Combining: w(e) = w(fj+1), i.e. w(T ∗∗) = w(T ∗).

Thus T ∗∗ is min-weight spanning tree and it contains
a longer initial segment of the edges of T , than T ∗ did.

Repeating this procedure at most (n − 1)-times, we
transform any min-weight spanning tree into T .

7


