Recall: Leaves, trees, forests...____

A graph with no cycle is acyclic. An acyclic graph is called a forest.

A connected acyclic graph is a tree.

A leaf (or pendant vertex) is a vertex of degree 1.

A spanning subgraph of G is a subgraph with vertex set V(G).

A spanning tree is a spanning subgraph which is a tree.

Examples. Paths, stars

Recall: Properties of trees_

Lemma. T is a tree, $n(T) \ge 2 \Rightarrow T$ contains at least two leaves.

Deleting a leaf from a tree produces a tree.

Theorem (Characterization of trees) For an n-vertex graph G, the following are equivalent

- 1. *G* is connected and has no cycles.
- 2. *G* is connected and has n 1 edges.
- 3. G has n 1 edges and no cycles.
- 4. For each $u, v \in V(G)$, G has exactly one u, v-path.

Corollary.

- (i) Every edge of a tree is a cut-edge.
- (*ii*) Adding one edge to a tree forms exactly one cycle.
- (*iii*) Every connected graph contains a spanning tree.

Recall: The edge-exchange lemma

Proposition. Let T and T' be spanning trees of a connected graph G.

Then for every $e \in E(T) \setminus E(T')$, there exists an edge $e' \in E(T') \setminus E(T)$, such that both T - e + e' and T' + e - e' are spanning trees of G.

How to build the cheapest road network?_

G is a weighted graph if there is a weight function $w : E(G) \to IR$.

Weight w(H) of a subgraph $H \subseteq G$ is defined as

$$w(H) = \sum_{e \in E(H)} w(e).$$

Example:

Kruskal's Algorithm

Kruskal's Algorithm

Input: connected graph G, weight function $w : E(G) \rightarrow \mathbb{R}$, $w(e_1) \leq w(e_2) \leq ... \leq w(e_m)$.

Idea: Maintain a spanning forest H of G. At each iteration try to enlarge H by an edge of smallest weight.

Initialization: $V(H) \leftarrow V(G), E(H) \leftarrow \emptyset, i \leftarrow 1$

```
WHILE i \leq n

e \leftarrow e_i

IF e goes between two components of H THEN

update H \leftarrow H + e

IF H is connected THEN

stop and return H

i \leftarrow i + 1
```

Theorem. In a connected weighted graph G, Kruskal's Algorithm constructs a minimum-weight spanning tree.

Proof of correctness of Kruskal's Algorithm_

Proof. T is the graph produced by the Algorithm. $E(T) = \{f_1, \ldots, f_{n-1}\}$ and $w(f_1) \leq \cdots \leq w(f_{n-1})$.

Easy: *T* is spanning (already at initialization!) *T* is a connected (by termination rule) and has no cycle (by iteration rule) \Rightarrow *T* is a tree.

But **WHY** is *T* min-weight?

Let T^* be an arbitrary min-weight spanning tree. Let j be the largest index such that $f_1, \ldots, f_j \in E(T^*)$.

If j = n - 1, then $T^* = T$. Done.

Proof of Kruskal, cont'd

If j < n - 1, then $f_{j+1} \notin E(T^*)$. There is an edge $e \in E(T^*)$, such that $T^{**} = T^* - e + f_{j+1}$ is a spanning tree.

(i) $w(T^*) - w(e) + w(f_{j+1}) = w(T^{**}) \ge w(T^*)$ So $w(f_{j+1}) \ge w(e)$.

(*ii*) Key: When we selected f_{j+1} into T, e was also available. (The addition of e wouldn't have created a cycle, since $f_1, \ldots, f_j, e \in E(T^*)$.) So $w(f_{j+1}) \leq w(e)$.

Combining: $w(e) = w(f_{j+1})$, i.e. $w(T^{**}) = w(T^*)$. Thus T^{**} is min-weight spanning tree and it contains a *longer* initial segment of the edges of T, than T^* did.

Repeating this procedure at most (n - 1)-times, we transform any min-weight spanning tree into T.