Exercise Sheet 1

Due date: 12:30, Oct 21st, at the beginning of lecture. Late submissions will meet a most unfortunate fate.

You should try to solve all of the exercises below, but clearly mark which two solutions you would like us to grade - each problem is worth 10 points. We encourage you to submit in pairs, but please remember to indicate the author of each solution.

Exercise 1 In the exercise you will prove the classic Erdős-Szekeres bound on the Ramsey numbers.
(i) Show that $R(s, 2)=s$ and $R(2, t)=t$.
(ii) Show that for any $s, t \geq 3, R(s, t) \leq R(s-1, t)+R(s, t-1)$.
(iii) Prove, by induction, that $R(s, t) \leq\binom{ s+t-2}{s-1}$ for any $s, t \geq 2$.

Exercise 2 Improve our upper bound on the multicolour Ramsey numbers by showing

$$
R_{r}\left(t_{1}, t_{2}, \ldots, t_{r}\right) \leq r^{\sum_{i=1}^{r} t_{i}} .
$$

[Hint (to be read backwards): cimiM eht lanigiro ruoloc-owt foorp, daetsni fo gniyrt ot ecuder eht rebmun fo sruoloc.]

Exercise 3 Deduce the finite Ramsey theorem from the infinite case. That is, using the fact that every red-/blue-colouring of $\binom{\mathbb{N}}{2}$ contains an infinite monochromatic clique, show that for every t there is a finite n such that every red-/blue-colouring of $E\left(K_{n}\right)$ contains a monochromatic K_{t}.

Exercise 4 In this exercise we will provide lower bounds for the multicolour Ramsey problem.
(a) Show that if $r\binom{n}{t} r^{-\binom{t}{2}}<1$, then $R_{r}(t, t, \ldots, t) \geq n+1$. Deduce the bound

$$
R_{r}(t, t, \ldots, t) \geq t e^{-1} r^{\frac{t-1}{2}-\frac{1}{t}} .
$$

(b) Show that for any n, we have $R_{r}(t, t, \ldots, t) \geq n-r\binom{n}{t} r^{-\binom{t}{2} \text {. What bound does this }}$ give for $R_{r}(t, t, \ldots, t)$?

