Exercise Sheet 12

Due date: 12:30, Jan 27th, at the beginning of lecture. Late submissions will retracted to their boundaries. I

You should try to solve all of the exercises below, but clearly mark which two solutions you would like us to grade - each problem is worth 10 points. We encourage you to submit in pairs, but please remember to indicate the author of each solution.

Exercise 1 In this exercise we will use the Kruskal-Katona theorem to strengthen the LYM inequality. First we will introduce some notation. Given numbers $k \geq 1$ and $m \geq 0$, let $K K(m, k)$ be the minimum size of the shadow of a family of m sets of size k guaranteed by the Kruskal-Katona theorem. That is, if $m=\binom{a_{k}}{k}+\binom{a_{k-1}}{k-1}+\ldots+\binom{a_{s}}{s}$ for some $a_{k}>$ $a_{k-1}>\ldots>a_{s} \geq s$, then $K K(m, k)=\binom{a_{k}}{k-1}+\binom{a_{k-1}}{k-2}+\ldots+\binom{a_{s}}{s-1}$.
(i) In the colexicographic order on $\binom{\mathbb{N}}{k}$, we say $A<B$ if and only if $\max (A \Delta B) \in B$; informally, sets with larger elements come later. We write $\mathcal{C}(m, k)$ for the set family given by the first m sets in the colexicographic order on $\binom{\mathbb{N}}{k}$. Show that the bound in the Kruskal-Katona Theorem is tight by observing that $\partial(\mathcal{C}(m, k))=\mathcal{C}(K K(m, k), k-1)$.
(ii) Strengthen the LYM inequality by proving the following statement about antichains. Given a vector $\left(a_{0}, a_{1}, \ldots, a_{n}\right) \in \mathbb{N}^{n+1}$, set $w_{n}=a_{n}$, and, for every $0 \leq k \leq n-1$, set $w_{k}=K K\left(w_{k+1}, k+1\right)+a_{k}$. There is then an antichain $\mathcal{A} \subseteq 2^{[n]}$ with exactly a_{k} sets of size k for every $0 \leq k \leq n$ if and only if $w_{1} \leq n$ and $w_{0} \leq 1$.
[Hint at http://discretemath.imp.fu-berlin.de/DMII-2015-16/hints/S12.html.]
Exercise 2 Given a set family $\mathcal{F} \subseteq\binom{[n]}{k}$, define its ℓ-shadow to be

$$
\partial_{\ell}(\mathcal{F})=\left\{E \in\binom{[n]}{\ell}: E \subset F \text { for some set } F \in \mathcal{F}\right\} .
$$

(i) For $0 \leq \ell<k$ and $m=\binom{a_{k}}{k}+\binom{a_{k-1}}{k-1}+\ldots+\binom{a_{s}}{s}$, where $a_{k}>a_{k-1}>\ldots>a_{s} \geq s$, determine $K K_{\ell}(m, k)$, the smallest possible size of the ℓ-shadow of a k-uniform set family \mathcal{F} of size m.
(ii) Deduce the Erdős-Ko-Rado theorem: if $n \geq 2 k$, the largest intersecting family in $\binom{[n]}{k}$ has size $\binom{n-1}{k-1}$.
[Hint at http://discretemath.imp.fu-berlin.de/DMII-2015-16/hints/S12.html.]

[^0]Exercise 3 We define the Kneser graph $K G(n, k)$ to have vertices $V=\binom{[n]}{k}$, with edges $F_{1} \sim F_{2}$ if and only if $F_{1} \cap F_{2}=\emptyset$. Observe ${ }^{2}$ that $K G(5,2)$ is the well-known Petersen graph ${ }^{3}$.
(i) For all $0 \leq k \leq n$, determine the chromatic number of the Kneser graph, $\chi(K G(n, k))$.

Given a graph G, let $\mathcal{I}(G)$ be the set of its independent sets. The fractional chromatic number $\chi_{f}(G)$ is defined as the minimum $r \in \mathbb{R}$ for which one may assign non-negative real numbers $x_{I} \geq 0$ to every independent set $I \in \mathcal{I}(G)$ such that $\sum_{I \in \mathcal{I}(G)} x_{I}=r$, subject to the constraint that for every vertex $v \in V(G), \sum_{I \ni v} x_{I} \geq 1$.
(ii) Show that for any N-vertex graph $G, \frac{N}{\alpha(G)} \leq \chi_{f}(G) \leq \chi(G)$.
(iii) When $n \geq 2 k$, show that $\chi_{f}(K G(n, k))=\frac{n}{k}$.
[Hint at http://discretemath.imp.fu-berlin.de/DMII-2015-16/hints/S12.html.]
Exercise 4 Consider the two statements below.
(BU) For any continuous map $f: S^{d} \rightarrow \mathbb{R}^{d}$, there is some $x \in S^{d}$ such that $f(x)=f(-x)$.
(SC) If $S^{d}=U_{0} \cup U_{1} \cup \ldots \cup U_{d}$, where for each $1 \leq i \leq d, U_{i}$ is either open or closed, then there is some $0 \leq j \leq d$ such that U_{j} contains a pair of antipodal points $\{x,-x\}$.

In lecture we showed $(\mathrm{BU}) \Rightarrow(\mathrm{SC})$. Show that they are in fact equivalent by proving $(\mathrm{SC}) \Rightarrow(\mathrm{BU})$.

[^1]
[^0]: ${ }^{1}$ Discontinuously, of course.

[^1]: ${ }^{2}$ This is just to check that you have the definition correct, and to sate your mathematical curiosity, and is not for credit.
 ${ }^{3}$ A respected combinator once told me that the Petersen graph is the only graph that "may not be ugly."

