Exercise Sheet 14

Due date: 12:30, Feb 10th, at the beginning of lecture. Late submissions will be mauled by a bear and left for dead.

You should try to solve all of the exercises below, but clearly mark which two solutions you would like us to grade - each problem is worth 10 points. We encourage you to submit in pairs, but please remember to indicate the author of each solution.

Exercise 1 In this exercise we will prove a slightly stronger version of the 2-dimensional case of Sperner's Lemma. Let S be a triangle, and suppose its vertices are coloured 1, 2 and 3 in clockwise order. Now consider any subdivision of S with a legal colouring of the new vertices.

For each subtriangle in the subdivision, we will assign a label to each of its three edges. Processing the colours of the vertices in clockwise order, give an edge label +1 if the colours of its endpoints are $(1,2),(2,3)$ or $(3,1)$. Give it label -1 if the colours are $(2,1),(3,2)$ or $(1,3)$. Give it label 0 if the colours are $(1,1),(2,2)$ or $(3,3)$.

Note that as an internal edge of the subdivision is contained in two subtriangles, it will receive two labels: one for each subtriangle it is in.

By considering the sums of all of the labels, show that the subdivision does not just contain a rainbow triangle, but it contains a rainbow triangle with vertices of colour 1,2 and 3 in clockwise order.

Exercise 2 Let G be an ($2 k$)-partite graph, with each part having n vertices, of maximum degree Δ.
(i) Show that if $n>2 \Delta-\frac{\Delta}{k}$, then G must have an independent transversal.
(ii) Show that this is best possible: construct a $(2 k)$-partite graph with parts of size $2 \Delta-\left\lceil\frac{\Delta}{k}\right\rceil$ and maximum degree Δ that has no independent transversals.
[Hint at http://discretemath.imp.fu-berlin.de/DMII-2015-16/hints/S14.html.]

Exercise 3 We say a graph G has degeneracy d, written $\operatorname{degen}(G)=d$, if d is the smallest integer for which there is an ordering of the vertices such that every vertex has at most d edges to previous vertices. Let $\delta(G), \Delta(G)$ and $\chi(G)$ denote the minimum degree, maximum degree and chromatic number of G respectively.
(i) Show that for every graph $G, \delta(G) \leq \operatorname{degen}(G) \leq \Delta(G)$.
(ii) Prove that degen $(G)=\Delta(G)$ if and only if G has a $\Delta(G)$-regular connected component.
(iii) Prove that $\chi(G) \leq \operatorname{degen}(G)+1$.

Exercise 4 Let B^{d} denote the closed unit ball in \mathbb{R}^{d}; that is,

$$
B^{d}=\left\{\vec{x} \in \mathbb{R}^{d}: \sum_{i=1}^{d} x_{i}^{2} \leq 1\right\} .
$$

Let $f: B^{d} \rightarrow B^{d}$ be a continuous function. Brouwer's Fixed Point Theorem states that f must have a fixed point; that is, there is some $\vec{x} \in B^{d}$ such that $f(\vec{x})=\vec{x}$.

Since B^{d} can be continuously and reversibly deformed into the standard d-simplex Δ^{d}, where

$$
\Delta^{d}=\left\{\vec{x} \in \mathbb{R}^{d+1}: \sum_{i=1}^{d+1} x_{i}=1, \text { and } x_{i} \geq 0 \text { for all } i\right\}
$$

it is equivalent to show that any continuous map $f: \Delta^{d} \rightarrow \Delta^{d}$ has a fixed point. Use Sperner's Lemma to prove this version of Brouwer's Fixed Point Theorem.
[Hint at http://discretemath.imp.fu-berlin.de/DMII-2015-16/hints/S14.html.]

