Exercise Sheet 3

Due date: 12:30, Nov 4th, at the beginning of lecture. Late submissions will be used to fuel a bonfire¹.

You should try to solve all of the exercises below, but clearly mark which two solutions you would like us to grade – each problem is worth 10 points. We encourage you to submit in pairs, but please remember to indicate the author of each solution.

Exercise 1 Show that if $n \ge R^{(3)}(t,t)$, then any set of n points in \mathbb{R}^2 , no three collinear, contains a subset of t points in convex position.

[Hint (to be read backwards): yrT gniruoloc selpirt desab no tahw redro eht stniop raeppa ni nehw gniog dnuora eht elgnairt ni a esiwkcolc noitcerid.]

Exercise 2 Use Ramsey's theorem to show that for any infinite sequence $(x_1, x_2, x_3, ...)$ of real numbers, there is an infinite monotone² subsequence $(x_{i_1}, x_{i_2}, x_{i_3}, ...)$ given by some indices $i_1 < i_2 < i_3 < ...$

If we instead have a finite sequence $(x_1, x_2, x_3, \ldots, x_n)$, how large a monotone subsequence are we guaranteed to find?

Exercise 3

(i) Show that whenever the natural numbers \mathbb{N} are finitely coloured, one can find monochromatic $x, y, z \in \mathbb{N}$ such that x + y = z.

[Hint (to be read backwards): enifeD na etairporppa gniruoloc fo sriap fo larutan srebmun.]

(ii) Show that for every $r \ge 1$ there is some n = n(r) such that if the sets in $2^{[n]}$ (that is, all subsets of the *n*-element set [n]) are coloured with r colours, one can find non-empty disjoint sets X and Y such that X, Y, and $X \cup Y$ all receive the same colour.

Exercise 4 Let *H* be a *k*-graph, for some $k \ge 2$, with the property that $|e \cap f| \ne 1$ for any two edges $e, f \in E(H)$. Show that *H* is two-colourable.

¹Remember, remember! The fifth of November, The Gunpowder treason and plot; I know of no reason Why the Gunpowder treason Should ever be forgot! ²A sequence is *monotone* if it is either non-increasing or non-decreasing.