Exercise Sheet 6

Due date: 12:30, Nov 25th, at the beginning of lecture. Late submissions will used to stuff a turkey.

You should try to solve all of the exercises below, but clearly mark which two solutions you would like us to grade – each problem is worth 10 points. We encourage you to submit in pairs, but please remember to indicate the author of each solution.

Exercise 1 Let G = (V, E) be a graph, and let $A, B \subset V$ be two disjoint non-empty sets of vertices, of sizes a and b respectively. Let $X \subset A$ be a uniformly random set of k vertices, where $1 \leq k \leq a$ is fixed, and let $Y \subset B$ be an independent uniformly random set of ℓ vertices, for some fixed $1 \leq \ell \leq b$.

- (i) Show that $\mathbb{E}[d(X,Y)] = d(A,B)$; that is, the average density over subsets is the density of the pair (A, B) itself.
- (ii) Deduce that, in order to check whether or not the pair (A, B) is ε -regular, it suffices to check if $|d(X, Y) d(A, B)| \le \varepsilon$ for every pair (X, Y) with $X \subset A$ of size precisely $[\varepsilon a]$ and $Y \subset B$ of size precisely $[\varepsilon b]$.

Exercise 2 Let (A, B) be an ε -regular pair of density d, and let $s \in \mathbb{N}$ be fixed. Let $Y \subset B$ be fixed. Show that, provided $(d - \varepsilon)^{s-1} |Y| \ge \varepsilon |B|$,

$$|\{(a_1, a_2, \dots, a_s) \in A^s : |Y \cap (\bigcap_{i=1}^s N(a_i))| < (d - \varepsilon)^s |Y|\}| \le s\varepsilon |A|^s,$$

where N(a) is the neighbourhood of a vertex a. Hence only very few s-tuples of vertices in A have fewer than expected common neighbours in a large set Y.

[Hint (to be read backwards): noitcudnI si a s'rotanibmoc tseb dneirf!]

Exercise 3 The half-graph H_n is a bipartite graph with parts $A = \{a_1, a_2, \ldots, a_n\}$ and $B = \{b_1, b_2, \ldots, b_n\}$, and edges $E = \{\{a_i, b_j\} : i \leq j\}$. Given $\varepsilon > 0$, and any even $k \in \mathbb{N}$, find an explicit ε -regular partition of H_n with k parts (not counting the exceptional set) when $n \geq k/\varepsilon$. How many irregular pairs does your partition have?

<u>Bonus</u>: Show that for every $\varepsilon > 0$ there is some constant $c = c(\varepsilon) > 0$ such that if $k \ge 2$ and n is large enough, any equipartition of H_n into k parts must have at least ck irregular pairs.

Exercise 4 In this exercise you will show that a random bipartite graph is ε -regular with high probability, thus validating our intuitive understanding that ε -regular pairs "look random". Fix some $\varepsilon > 0$ and some probability $p \in [0, 1]$. Let $A = \{a_1, a_2, \ldots, a_n\}$ and $B = \{b_1, b_2, \ldots, b_n\}$ be the two vertex sets. For all $1 \le i, j \le n$, let the edge $\{a_i, b_j\}$ belong to our random graph G with probability p, independently of all other edges. Show that

 $\mathbb{P}((A, B) \text{ is } \varepsilon \text{-regular}) \to 1 \text{ as } n \to \infty.$

You may use the Chernoff bound, which in particular implies that if a random variable $X \sim \text{Bin}(n, p)$ is binomially distributed with parameters¹ n and p, then for any $t \ge 0$,

 $\mathbb{P}\left(|X - np| \ge t\right) \le 2\exp\left(-2t^2/n\right).$

¹The n and p here are not related to the n and p from the statement of the problem.