Exercise Sheet 9

Due date: 12:30, Dec 16th, at the beginning of lecture. Late submissions will be used to wrap Christmas presents.¹

You should try to solve all of the exercises below, but clearly mark which two solutions you would like us to grade – each problem is worth 10 points. We encourage you to submit in pairs, but please remember to indicate the author of each solution.

Exercise 1 This exercise concerns intersecting families $\mathcal{F} \subset 2^{[n]}$.

- (i) Show that every maximal² intersecting family in $2^{[n]}$ has size 2^{n-1} .
- (ii) Show that when n is even, $2^{[n]}$ contains at least $2^{\frac{1}{2}\binom{n}{n/2}}$ different intersecting families with 2^{n-1} sets (that is, of maximum possible size).³

Exercise 2 Prove the lemma from the proof of the Erdős–Ko–Rado theorem. That is, if $n \ge 2k$ and $\mathcal{F} \subseteq {\binom{[n]}{k}}$ is intersecting, show that any cyclic permutation π of [n] can have at most k sets $F \in \mathcal{F}$ in cyclic order.

Exercise 3 Recall that the Erdős lower bound on the Ramsey number R(t,t) did not provide an explicit construction. We saw that the Turán graph $T_{(t-1)^2,t-1}$ gives an explicit lower bound $R(t,t) > (t-1)^2$. Here we seek to provide a larger construction.

Construct a graph G whose vertices are the triples of elements in [t-1]. Put an edge between triples F and F' if and only if $|F \cap F'| = 1$. Show that G has no clique or independent set of size t, and deduce that $R(t,t) > {t-1 \choose 3}$.

¹Unless they are *very* late, in which case they may be used for birthday presents throughout the year.

²In lecture, we proved this for every maximum intersecting family.

³Here we think of the set families as being labelled, so you do not need to worry about different families being isomorphic to each other. For example, a star with centre 1 is different from a star with centre 2.

Exercise 4 Neighbouring Oddtown is the little-known town of Evenoddertown. Curiously enough, this town also has a population of n people, who also enjoy making clubs. However, to distinguish themselves from their neighbours in Oddtown, the people of Evenoddertown make their clubs according to the following two rules:

- 1. Every club should have an even number of members.
- 2. Any two different clubs should have an odd number of common members.

What kind of restrictions do these modified rules provide?

- (i) Show that there can be at most n + 1 clubs.
- (ii) Improve the bound in (i) to show that if n is odd, there can be at most n clubs, while if n is even, there can be at most n-1 clubs.
- (iii) Construct sets of clubs to show the bounds in (ii) are best possible.

[Hint (to be read backwards): tahW si eht noisnemid fo eht ecaps eht citsiretcarahc srotcev naps? wohS taht yna noitaler neewteb eht srotcev tsum evlovni lla eht srotcev, dna osla na ddo rebmun fo srotcev.]