Van der Waerden's Theorem

An r-coloring of a set S is a function $c: S \rightarrow[r]$.
A set $X \subseteq S$ is called monochromatic if c is constant on X.

Let $I N$ be two-colored.
Is there a monochromatic 3-AP?

Roth's Theorem says: YES, in the larger of the two color classes.

A weaker statement, not specifying in which color the 3-AP occurs:

Proposition In every two-coloring of $\left[2 \cdot\left(5 \cdot\left(2^{5}+1\right)\right)\right]$ there is a monochromatric 3-AP.

What if we want a longer arithmetic progression?
Can we color the integers with two colors such that there is no monochromatic 4-AP?
Szemerédi's Theorem says NO.

How far must we color the integers to find an AP of length 4? Or k ?

In order to prove something about this, we introduce more colors.
$W(r, k)$ is the smallest integer w such that any r coloring of [w] contains a monochromatic k-AP.

Theorem (van der Waerden, 1927) For every $k, r \geq$ $1, W(r, k)<\infty$.

Remark Consequence of Szemerédi's Theorem.

Proof of Van der Waerden's Theorem

Induction on k, the following statement:
"For all $r \geq 1, W(r, k)<\infty$ "
$W(r, 1)=1$
$W(r, 2)=r+1$
$W(r, 3)=$?
Suppose $W(r, k)<\infty$ for every $r \geq 1$.
Let us find an upper bound on $W(r, k+1)$ in terms of these numbers.
$W(1, k+1)=k+1$
$W(2, k+1) \leq 2 \cdot(2 W(2, k)) \cdot W\left(2^{2 W(2, k)}, k\right)$
$W(3, k+1) \leq 2 \cdot 2 \cdot 2 W(3, k) \cdot W\left(3^{2 W(3, k)}, k\right)$

$$
\cdot W\left(3^{2 \cdot(2 W(3, k)) \cdot W\left(3^{2 W(3, k)}, k\right)}, k\right)
$$

For general r, define the (kind of fast growing) function $L_{r}: \mathbb{N} \rightarrow \mathbb{N}$,

$$
L_{r}(x)=x W\left(r^{x}, k\right) .
$$

Then

$$
W(r, k+1) \leq \underbrace{2 L_{r}\left(\cdots 2 L_{r}\left(2 L_{r}\left(2 L_{r}(1)\right)\right)\right)}_{r \text {-times }} .
$$

We prove by induction on i, that no matter how the first $x_{i}=\underbrace{2 L_{r}\left(\cdots 2 L_{r}\left(2 L_{r}\left(2 L_{r}(1)\right)\right)\right)}_{i \text {-times }}$ integers are colored with r colors, there exists i monochromatic k $\operatorname{APs} a^{(j)}, a^{(j)}+d_{j}, \ldots, a^{(j)}+(k-1) d_{j}, 1 \leq j \leq i$, each in different colors, such that $a^{(j)}+k d_{j}$ is the very same integer a for each $j, 1 \leq j \leq i$.

Divide $\left[L_{r}\left(x_{i}\right)\right.$] into blocks of x_{i} integers. There are $r^{x_{i}}$ ways to r-color a block. By the definition of $W\left(r^{x_{i}}, k\right)$, there is a k-AP of blocks with the same coloring pattern.

Let c_{j} be the color of the monochromatic k-AP $a^{(j)}, a^{(j)}+d_{j}, \ldots, a^{(j)}+(k-1) d_{j}$, for $1 \leq j \leq i$.

Case 1. If the color of $a=a^{(j)}+k d_{j}$ is one of these colors then there is a $(k+1)$ - AP in this color and we are done.

Case 2. Otherwise the copies of a in the k blocks forms a monochromatic k-AP of color $c_{i+1} \neq c_{j}$, $1 \leq j \leq i$. We can form monochromatic k-APs in the other colors c_{j} : Take the copy of $a^{(j)}+(l-1) d_{j}$ from the $l^{t h}$ block.

These $i+1 k$-APs are monochromatic of $i+1$ distinct colors and would be continued in the same $(k+1)^{s t}$ element. This element is certainly less than $2 L_{r}\left(x_{i}\right)$.

After the r th iteration the colors run out, Case 2 cannot occur, and we have a monochromatic ($k+1$)-AP. \square

