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In this note I hope the emphasise the main points in the proof of Claim 2, which
were probably not very clear in lecture. To begin with, we recall the statement of the
claim.

Claim 2. Let S be a d-simplex with a subdivided boundary. It is possible to obtain a
subdivision of S with the same boundary by adding vertices in the interior, in some
order, such that each interior vertex is adjacent to at most 2d previous vertices1.

Proof. The proof of Claim 2 is by induction on the dimension, d. The base case, d = 1,
is straightforward, as we need only add one internal vertex adjacent to the two boundary
vertices of the 1-simplex.

Now we proceed with the induction step, with d ≥ 2. The first observation is that
one can obtain a subdivision of S by adding a single internal vertex and making it
adjacent to every boundary vertex. While this is certainly a subdivision, this does not
prove Claim 2, because we are potentially introducing too many new edges at once.

Hence what we do is imagine we added all these edges, thus giving a subdivision
with a lot of imaginary edges. We then will slowly change this subdivision into some-
thing acceptable by removing one imaginary edge at a time. This will require the
introduction of many new internal vertices, but, using the induction hypothesis and a
little topological wizardry, each of these new internal vertices introduces at most 2d
edges at a time.

Step 0 Starting with our imaginary subdivision (with only one internal vertex, with
an imaginary edge to every boundary vertex), order the imaginary edges arbitrarily.

Step 1 In our current subdivision (all real edges + all surviving imaginary edges),
consider the next imaginary edge. Call this edge e. In steps 2 to 6, we will modify the
subdivision to remove e.

Step 2 In order to remove e, we will have to replace all the subsimplices containing
e. Consider the union of these subsimplices — these must account for some volume of
space surrounding the edge e. In other words, the union of these simplices looks like2

a closed d-dimensional ball3, which we will call Be, of which e is a diameter.
In three dimensions, you might imagine this union of simplices containing e looks

something like a mandarin4, with each segment of the mandarin representing one of

1That is, either boundary vertices or interior vertices that were added earlier.
2If you smooth out the surface a little, which doesn’t really change anything.
3The closed unit d-ball Bd is the set of points ~x ∈ Rd such that

∑d
i=1 x

2
i ≤ 1. Its boundary is the

(d− 1)-dimensional sphere Sd−1, consisting of all points ~x ∈ Rd with
∑d

i=1 x
2
i = 1.

4Or tangerine, or clementine, or whatever you prefer.
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the subsimplices, and the edge e being the stringy white fibre5 that runs from top to
bottom.

Figure 1: A half-peeled mandarin, or the union of subsimplices containing e?

Step 3 What we need to do is find a new subdivision of Be that does not use the edge
e.6 We can then use the new subdivision for Be, and use the rest of the old subdivision
for S \Be, and we will have a subdivision of S that does not use e.7

Step 4 It is a topological fact that if we consider the union of the subsimplices that
make up Be, and remove the edge e, what we end up with is essentially the (d − 2)-
dimensional sphere Sd−2. In our three-dimensional example, we get an equatorial circle
on the surface of the mandarin that separates the endpoints of the edge e.8

Step 5 We now consider the (d− 1)-dimensional closed ball we obtain by ‘filling in’
this sphere Sd−2, which we call B′e. That is, consider the surface of the ball that is
exposed when we cut along the equatorial circle. B′e is topologically equivalent to a
(d−1)-simplex, and has a subdivided boundary (the remaining faces of the subsimplices
surrounding e).

Figure 2: The cut mandarin, exposing the 2-simplex B′e inside the equator.

5I don’t know what the proper term for this is.
6In our fruity three-dimensional example, we want to find a new way to divide up the interior of

the mandarin, rather than splitting it into its segments.
7Since our new subdivision for Be only changes the interior, and not the boundary, we can still

combine it with the old subdivision outside Be.
8You can think of the endpoints of the edge e as the little green stub of the mandarin and its

antipode, situated at the north and south poles with respect to this equatorial circle.
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By induction, we can add interior vertices to B′e, with each new vertex being adjacent
to at most 2(d− 1) previous vertices, and obtain a subdivision of B′e.

Note that in Figure 2, if one looks closely, one can make out a triangulation of the
surface of the mandarin, with each of the segments of the mandarin contributing a
triangle. This is not a valid subdivision of B′e, because the central vertex has too many
edges to boundary vertices. However, this represents the initial imaginary subdivision
of B′e in Step 0 of our induction hypothesis. What we will instead use is the final
subdivision the induction hypothesis gives us.

Figure 3: The good final subdivision of B′e.

Step 6 However, this only gives a subdivision of B′e, a lower-dimensional simplex
inside Be. What we need is a subdivision of all of Be.

We do this by lifting each (d − 1)-simplex in the subdivision of B′e into two d-
simplices — one above the equator and one below. This can be done by adding to
each new vertex in B′e two edges: one to each endpoint of the edge e. This means that
instead of being adjacent to at most 2(d − 1) previous vertices, the new vertices are
now adjacent to at most 2d previous vertices, but this is still okay. This then provides
a subdivision of the whole d-ball Be into d-simplices, none of which use the edge e.

For our three-dimensional mandarin, this means we find a different way to cut the
mandarin. Rather than splitting it into its natural segments, we break it up into
different pieces, none of which has a edge that runs the whole length of the mandarin.9

Step 7 This new subdivision of Be, together with the old subdivision of S \Be, gives
a subdivision of S that does not use the edge e. Repeating this process for every
imaginary edge e, we will obtain a subdivision of S that does not use any imaginary
edges.

In this subdivision, every new vertex added was adjacent to at most 2d previous
vertices (and the original internal vertex is not adjacent to any previous vertices, since
all of those edges have been removed), completing the induction step and the proof of
Claim 2.

In closing, I concede that some of my references to mandarins / tangerines / clemen-
tines / oranges may not have been botanically correct, but if that is your biggest concern
with this proof, then this note has served its purpose.

9Which is a terrible way to eat a mandarin, if you ask me.
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