
Shifting shadows: the Kruskal–Katona Theorem
Shagnik Das

Introductory remarks

As we have seen1, antichains and intersecting families are fundamental to Extremal
Set Theory. The two central theorems, Sperner’s Theorem and the Erdős–Ko–Rado
Theorem, have inspired decades of research since their discovery2, helping establish
Extremal Set Theory as a vibrant and rapidly growing area of Discrete Mathematics.

One must, then, pay a greater than usual3 amount of respect to the Kruskal–Katona
Theorem, as it builds on both Sperner’s Theorem and the Erdős–Ko–Rado Theorem.
Indeed, as you will prove for your homework assignment, the Kruskal–Katona Theorem
provides a precise and refined characterisation of the number of sets of different sizes
that an antichain can contain. On the other hand, the Erdős–Ko–Rado Theorem follows
almost immediately as a consequence of the Kruskal–Katona Theorem.

There is no doubt, then, that the Kruskal–Katona Theorem is truly a gem of Ex-
tremal Set Theory. In this note we introduce the theorem and give a short proof via
the shifting technique, a powerful method that can be used to prove many results in
this field.

The statement of the theorem(s)

Shadows The Kruskal–Katona Theorem concerns the size of shadows of set families,
so in order to state it, we should first define what the shadow of a family is.

Definition 1 (Shadow). Given a k-uniform set family F , the shadow ∂F is defined as

∂F = {E : E = F \ {x} for some F ∈ F and x ∈ F} .

The shadow ∂F is therefore the (k− 1)-uniform set family consisting of all (k− 1)-
sized subsets of sets in F . Note that the shadow is intrinsic to F , and does not depend
on the underlying set over which F is defined.

Extremal problem Now that we know what the shadow is, we4 wish to know more
about it. The most fundamental property of a shadow is its size — how many sets can
it contain? Clearly, the size of the shadow ∂F will depend on the size of F : if F ⊆ F ′,
then ∂F ⊆ ∂F ′. A reasonable question, then, is to fix the size of F , and then ask how
small/large the shadow of F can be.

The maximisation problem turns out to not be so interesting: clearly every k-set
contains k subsets of size (k−1), so we immediately have the upper bound |∂F| ≤ k |F|.
It is also not difficult to see that we get equality when, for instance, the sets in F are
pairwise disjoint. We therefore turn our attention to the minimisation problem.

1Or, rather more accurately, as we have been told, for our temporal budget did not allow for an
exhaustive review of all that comprises the field of Extremal Set Theory.

2And, fortunately for us, these wells show no signs of running dry.
3For one ought to respect every mathematical theorem, proposition and lemma.
4For we are creatures of immense and unsettling curiosity.
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Question 2. Given a k-uniform set family F of m sets, how small can ∂F be?

Brief meditation should suggest that one would be best served by taking the sets
over as few elements as possible. In particular, if m =

(
n
k

)
for some n, it seems en-

tirely reasonable for the smallest shadow to be attained by the family F =
(
[n]
k

)
(in

which case ∂F =
(

[n]
k−1

)
has size

(
n

k−1

)
). Now Mathematics is strewn with problems

where the reasonable answer is completely wrong, but this is not one of them. The
Kruskal–Katona Theorem proves that this intuitive solution is indeed correct, and in
fact precisely determines the minimum size of the shadow for every k and m. However,
as an exact result, its statement is a little involved, and requires some preparation.

Cascade notation In order to state the precise result, it is convenient to represent
the number of sets, m, in a form related to our clique-based construction. This rep-
resentation is known as cascade notation, where a natural number is represented as a
sum of binomial coefficients.5

Definition 3 (k-cascade representation). Given natural numbers k and m, the k-cascade
representation of m is

m =

(
ak
k

)
+

(
ak−1
k − 1

)
+

(
ak−2
k − 2

)
+ . . . +

(
as
s

)
,

where ak > ak−1 > ak−2 > . . . > as ≥ s ≥ 1.

One can show, by means of a simple induction6, that the k-cascade representation
always exists, and is unique.

The theorem Having dealt with the preliminaries, we are now in position to state
the Kruskal–Katona Theorem, which was proven independently by the two eponymous
combinators.

Theorem 4 (Kruskal, 1963; Katona, 1968). Any k-uniform set family F of size
m =

(
ak
k

)
+
(
ak−1

k−1

)
+ . . . +

(
as
s

)
, where ak > ak−1 > . . . > as ≥ s ≥ 1, must have

|∂F| ≥
(

ak
k − 1

)
+

(
ak−1
k − 2

)
+ . . . +

(
as

s− 1

)
.

The colexicographic order It should not surprise7 you to learn that Theorem 4 is
best possible for every choice of k and m — how could a theorem with such a precise
statement be anything but? The optimal construction follows our earlier intuition by
building these cliques one set at a time, but is best described by way of the colexico-
graphic order on k-subsets of N.

5One could think of the k-cascade notation as a binomial version of the binary expansion, which
expresses a number as a sum of powers of two. While the binary expansion is well-suited for many
purposes, the k-cascade notation is perfect for Kruskal–Katona.

6Choose ak to be the largest natural number such that m ≥
(
ak

k

)
, and if we do not have equality,

induct with k − 1 and m −
(
ak

k

)
. The uniqueness requires a little more work, but not much – if one

chooses ak−i to be too small for some i ≥ 0, then one cannot ‘make up’ for it with the later values.
7Not least of all because we mentioned this earlier.
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Definition 5 (Colexicographic order). In the colexicographic order on
(N
k

)
, we have

A < B if and only if max(A∆B) ∈ B.

Informally, sets with larger elements come later in the colexicographic order. For
instance, if k = 3, the first few sets in the colexicographic order are

{1, 2, 3}, {1, 2, 4}, {1, 3, 4}, {2, 3, 4}, {1, 2, 5}, {1, 3, 5}, {2, 3, 5}, {1, 4, 5}, . . . .
The first m sets in the colexicographic order give equality in Theorem 4, showing

that the bound cannot be improved. Indeed, if the k-cascade representation of m is(
ak
k

)
+
(
ak−1

k−1

)
+. . .+

(
as
s

)
, then C(m, k), the family of the first m sets in the colexicographic

order on
(N
k

)
, is the union of all sets in

(
[ak]
k

)
, the sets obtained by appending ak + 1 to

any set in
(
[ak−1]
k−1

)
, the sets obtained by appending {ak−1+1, ak+1} to any set in

(
[ak−2]
k−2

)
,

and so on, until we get the sets formed by appending {as+1 + 1, as+2 + 1, . . . , ak−1 +
1, ak + 1} to any set in

(
[as]
s

)
. The shadow of this family is then all sets in

(
[ak]
k−1

)
, the

sets obtained by appending ak + 1 to any set in
(
[ak−1]
k−2

)
, the sets obtained by appending

{ak−1 + 1, ak + 1} to any set in
(
[ak−2]
k−3

)
, and so on, until we reach the sets formed by

appending {as+1 + 1, as+2 + 1, . . . , ak−1 + 1, ak + 1} to any set in
(
[as]
s−1

)
. Hence we find

|∂C| =
(

ak
k−1

)
+
(
ak−1

k−2

)
+ . . . +

(
as
s−1

)
.

A more convenient truth As alluded to in the introductory remarks, the Kruskal–
Katona Theorem is not only true but also useful.8 However, when it comes to applica-
tions, it can be a trying task to carry out calculations with the k-cascade representation
of numbers. Indeed, there is a good reason for our9 having designed computers to work
in binary rather than binomials.

Fortunately, Lovász found a slightly weaker, but computationally much friendlier,
form of Theorem 4. To present this version, we extend the definition of the binomial
coefficient to real numbers, setting, for any x ∈ R and k ∈ N,(

x

k

)
=

x(x− 1) . . . (x− k + 1)

k!
.

On the domain x ∈ [k,∞), the polynomial is strictly increasing with range [1,∞), and
so it follows that for any m ≥ 1, there is a unique x such that

(
x
k

)
= m.

Theorem 6 (Lovász, 1979). Any k-uniform set family F of size m =
(
x
k

)
, where x ≥ k,

must have

|∂F| ≥
(

x

k − 1

)
.

As one might imagine, this is much easier to work with from the computational
point of view. Note that when m =

(
n
k

)
for some integer n, Theorems 4 and 6 agree,

and so this is also tight infinitely often. For
(
n
k

)
< m <

(
n+1
k

)
, the lower bound in

Theorem 6 is slightly smaller than that in 4, but usually not by enough to disrupt any
applications.

8While one can forgive a theorem for not being useful, especially since it is hard to judge what will
be useful 593 years in the future, one should always be wary of a theorem that is not true.

9This ‘our’ is a very plural ‘our,’ referring to all mankind. I cannot in good conscience claim any
personal credit for the design of computers.
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Shifting

To prove Theorems 4 and 6, we shall make use of the shifting technique, a powerful
method in Extremal Set Theory.10 In this section we will define the shifting operation
and collect a few useful facts regarding shifting and shadows.

The operation If we believe the theorem to be true, then we know that the initial
segments of the colexicographic order, C(m, k), minimise the size of the shadow. As
we have noted earlier, these initial segments consist of sets that avoid large elements.
The heuristic behind the shifting operation is to try to make our family look more like
C(m, k) by replacing large elements by smaller ones.

Definition 7 (Shift operator). Let F ⊂
(N
k

)
for some k ≥ 1, and fix some i ≥ 2. The

shift operator Si provides a new family Si(F) = {Si(F ) : F ∈ F}, where

Si(F ) =

{
F \ {i} ∪ {1} if i ∈ F, 1 /∈ F, and F \ {i} ∪ {1} /∈ F ,
F otherwise

.

In other words, for every set F ∈ F , we try to replace the element i by the element
1. The only reasons why we may not be able to do this are if i /∈ F , 1 ∈ F , or the
set we would obtain is already in the family F . In the latter case, we say that F was
blocked from shifting.

Key properties The first (almost immediate) fact we observe is that shifting families
preserves their size.

Claim 8. For any finite F ⊂
(N
k

)
and any i ≥ 2, |Si(F)| = |F|.

Proof. The only way this could fail to hold is if Si(F ) = Si(F
′) for two different sets

F, F ′ ∈ F . Clearly at least one of the sets has to shift for this to happen, so we may
assume F 6= Si(F ) = F \ {i}∪{1}. For F to have shifted, it cannot have been blocked,
so we cannot have F ′ = Si(F ). Thus F ′ 6= Si(F

′) = F ′ \ {i} ∪ {1}. However, we then
have F = Si(F ) \ {1} ∪ {i} = Si(F

′) \ {1} ∪ {i} = F ′, a contradiction. Thus the map
Si : F → Si(F) must in fact be a bijection, and so |F| = |Si(F)|.

The next claim shows that shifting behaves nicely with shadows. There is some sort
of subcommutativity — the shadow of a shifted family is contained in the shift of the
shadow.

Claim 9. For any finite F ⊂
(N
k

)
and any i ≥ 2, ∂Si(F) ⊆ Si(∂F).

Proof. Suppose E ∈ ∂Si(F), and so E = Si(F ) \ {x} for some F ∈ F and x ∈ Si(F ).
A simple case analysis shows E ∈ Si(∂F), which implies the claim.

First suppose 1, i /∈ Si(F ). Since 1 /∈ Si(F ), we must have Si(F ) = F , and hence
E ⊂ F . Thus E ∈ ∂F , and as i /∈ E, Si(E) = E. Hence E ∈ Si(∂F), as desired.

10For instance, the Erdős–Ko–Rado Theorem can also be proven by shifting, although that proof is
somewhat longer than the elegant proof of Katona we saw in lecture.
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Now suppose 1, i ∈ Si(F ). As i ∈ Si(F ), we have Si(F ) = F , and so E ∈ ∂F
as before. If x 6= 1, then 1 ∈ E, and so E = Si(E) ∈ Si(F). If x = 1, then
E ′ = E \ {i} ∪ {1} ⊂ F , and so E ′ ∈ ∂F . This means E is blocked from shifting, and
so Si(E) = E, implying E ∈ Si(∂F).

For the third case, suppose Si(F ) ∩ {1, i} = {i}. As i ∈ Si(F ), we must have
Si(F ) = F . However, as i ∈ F and 1 /∈ F , F must have been blocked from shifting
by F ′ = F \ {i} ∪ {1} ∈ F . Since E ⊂ Si(F ) = F , E ∈ ∂F . If x = i, then i /∈ E,
and so E = Si(E) ∈ Si(∂F). If x 6= i, then E would be blocked from shifting by
E ′ = F ′ \ {x} ∈ ∂F , and so E = Si(E) ∈ Si(∂F) in this case as well.

The final case is when Si(F )∩{1, i} = {1}. Observe that i /∈ E, and so Si(E) = E.
Hence if E ∈ ∂F , E = Si(E) ∈ Si(∂F), as required. If F did not shift, then F = Si(F )
and E ∈ ∂F . If F did shift, then F = Si(F ) \ {i} ∪ {1}. If x = 1, then E ⊂ F , and
so as before E ∈ ∂F . If x 6= 1, let E ′ = E \ {1} ∪ {i}, and observe that E ′ ⊂ F ,
and so E ′ ∈ ∂F . Then either E ∈ ∂F as well, or E ′ is not blocked from shifting, and
E = Si(E

′) ∈ Si(F). This completes the case analysis.

Stable families Shifting thus seems to make things better, or, at the very least, not
make them worse.11 If a family cannot be shifted, we call it stable.

Definition 10 (Stable). We say a set family F is stable if Si(F) = F for every i ≥ 2.

The following claim then puts the results from Claims 8 and 9 together.

Claim 11. For any finite family F ⊂
(N
k

)
, there is a stable family G ⊂

(N
k

)
such that

|G| = |F| and |∂G| ≤ |∂F|.

Proof. If F is stable, we may take G = F . Otherwise there is some i ≥ 2 for which
F ′ = Si(F) 6= F . By Claim 8, |F ′| = |F|, and by Claim 9, |∂F ′| ≤ |Si(∂F)| = |∂F|.
We now repeat this process with F ′: if it is stable, we are done, and otherwise we can
shift it again.

Every time we shift the family, we strictly increase the number of sets containing 1.
This process must therefore terminate within |F| steps, at which point we would have
the desired stable family.

If the only stable families were the initial segments of the colexicographic order,
C(m, k), then Theorem 4 would follow directly from Claim 11. Sadly12, this is not the
case. However, we can still derive enough structural information about the shadows of
stable families to prove Theorems 4 and 6.

Given any set family F ⊂
(N
k

)
, we have a partition F = F0 ∪ F1, where F0 = {F ∈

F : 1 /∈ F} and F1 = {F ∈ F : 1 ∈ F}. Since 1 belongs to every set in F1, we can
define the (k − 1)-uniform family F ′1 = {F \ {1} : F ∈ F1}. The following claim shows
that this set F ′1 cannot be too small.

Claim 12. |F ′1| ≥ |∂F0|.
11Much like with the Hippocratic Oath, the basic tenet of shifting is to ‘first do no harm.’
12But not too sadly, for if this were true, then shifting could only be used for problems whose

extremal families were of the form C(m, k), and would not be so widely useful.
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Proof. In fact, we shall show ∂F0 ⊆ F ′1. Indeed, suppose E ∈ ∂F0. Then we must
have E = F \ {x} for some F ∈ F0 and x ∈ F . As F ∈ F0, x ≥ 2. Since F is
stable, Sx(F) = F , and thus Sx(F ) = F . This means F was blocked from shifting, so
F ′ = F \{x}∪{1} ∈ F , and in particular is in F1. Hence E = (F \{x}∪{1})\{1} ∈ F ′1,
as required.

Once we know F ′1 is reasonably large, we will be in place to apply this next claim,
which shows that |∂F| is controlled by F ′1.

Claim 13. |∂F| = |F ′1|+ |∂F ′1|.

Proof. We clearly have ∂F = ∂F0 ∪ ∂F1. In Claim 12, we saw ∂F0 ⊆ F ′1. We will
now show that ∂F1 consists of those sets in F ′1 together with the sets obtained by
appending {1} to any set in ∂F ′1. As sets in F ′1 do not contain 1, these two kinds of
sets are disjoint, and the claim follows.

That F ′1 ⊆ ∂F1 follows from its definition, as for every F ′ ∈ F ′1, we have F ′ = F \{1}
for some F ∈ F1.

The second kind of set is of the form E = F ′ \ {x} ∪ {1} for some F ′ ∈ F ′1 and
x ∈ F ′. Then E = (F ′ ∪ {1}) \ {x}, where F = F ′ ∪ {1} ∈ F1 by definition of F ′1.
Hence E ∈ ∂F1, and thus every set in ∂F ′1 gives a different set in ∂F1.

To see that every set in ∂F1 is covered, note that if E = F \ {x} for some F ∈ F1

and x ∈ F , then if x = 1 we have F ∈ F ′1. If x 6= 1, then E = E ′ ∪ {1}, where
E ′ = F ′ \ {x}, where F ′ = F \ {1} ∈ F ′1. Hence E is obtained by adding 1 to the set
E ′ ∈ ∂F ′1.

The proof

We now have all the ingredients required to prove Theorems 4 and 6. The proof we
give here is a short and unified proof given by Frankl in 1984.13 The proof is almost
identical for both theorems, differing only in some calculations. Hence we shall present
the proof for Theorem 4, and when different calculations are required for Theorem 6,
we shall write those calculations in brackets and in blue text, [like this].

Proof of Theorem 4 [Theorem 6]. We prove the theorem by induction on k.
The base case of k = 1 is trivial. Indeed, the 1-cascade representation of m is

(
m
1

)
.

Moreover, the shadow of any non-empty 1-uniform family F is ∂F = {∅}, and so we
have |∂F| = 1 =

(
m
0

)
, as required in both theorems.

For the induction step, we may assume k ≥ 2, and that the theorem holds for
(k−1)-uniform families of any size. We prove the induction step by an inner induction,
this time on m.

For the base case of this inner induction, suppose m = 1 =
(
k
k

)
. F then

consists of a single set F of size k, and so ∂F consists of all k subsets formed
by removing any one element from F . Thus |∂F| = k =

(
k

k−1

)
, as required

in both theorems.

13I have seen some sources attribute this to Lovász, but Frankl’s paper is available here: http:

//www.renyi.hu/~pfrankl/1984-2.pdf.
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We now proceed with the induction step of the inner induction, and hence
we may assume the theorem holds for any k-uniform family of size smaller
than m. Suppose F is a k-uniform set family of size m that minimises the
size of ∂F . By Claim 11, we may assume F is stable.

By Claim 13, |∂F| = |F ′1| + |∂F ′1|. In order to obtain the required lower
bound on |∂F|, we need F ′1 to be large enough. This is guaranteed by our
final claim.

Claim 14. |F ′1| ≥
(
ak−1
k−1

)
+
(
ak−1−1
k−2

)
+ . . . +

(
as−1
s−1

)
.

[
|F ′1| ≥

(
x−1
k−1

)
.
]

Let us first see how this claim completes the proof. Recall that F ′1 is a
(k − 1)-uniform family, and hence by the outer induction (on k), we may
lower bound the size of its shadow. Indeed, by the induction hypothesis, we
have

|∂F ′1| ≥
(
ak − 1

k − 2

)
+

(
ak−1 − 1

k − 3

)
+ . . .+

(
as − 1

s− 2

)
.

[
|∂F ′1| ≥

(
x− 1

k − 2

)
.

]

(Here we set
(
a1−1
−1

)
= 0 if s = 1.) Putting this together, Claim 13 gives

|∂F| = |F ′1|+ |∂F ′1|
[
≥
(
x− 1

k − 1

)
+

(
x− 1

k − 2

)
=

(
x

k − 1

)
.

]
≥
[(

ak − 1

k − 1

)
+

(
ak−1 − 1

k − 2

)
+ . . . +

(
as − 1

s− 1

)]
+

[(
ak − 1

k − 2

)
+

(
ak−1 − 1

k − 3

)
+ . . . +

(
as − 1

s− 2

)]
=

[(
ak − 1

k − 1

)
+

(
ak − 1

k − 2

)]
+

[(
ak−1 − 1

k − 2

)
+

(
ak−1 − 1

k − 3

)]
+ . . . +

[(
as − 1

s− 1

)
+

(
as − 1

s− 2

)]
=

(
ak

k − 1

)
+

(
ak−1
k − 2

)
+ . . . +

(
as

s− 1

)
.

This gives the desired lower bound on |∂F|, completing the induction step
of the inner induction, modulo Claim 14.

Proof of Claim 14. Suppose the claim were false. As m = |F| = |F0|+ |F1|
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and |F ′1| = |F1|, we must have

|F0| = m− |F ′1|
[
>

(
x

k

)
−
(
x− 1

k − 1

)
=

(
x− 1

k

)
.

]
>

[(
ak
k

)
+

(
ak−1
k − 1

)
+ . . . +

(
as
s

)]
−
[(

ak − 1

k − 1

)
+

(
ak−1 − 1

k − 2

)
+ . . . +

(
as − 1

s− 1

)]
=

[(
ak
k

)
−
(
ak − 1

k − 1

)]
+

[(
ak−1
k − 1

)
−
(
ak−1 − 1

k − 2

)]
+ . . . +

[(
as
s

)
−
(
as − 1

s− 1

)]
=

(
ak − 1

k

)
+

(
ak−1 − 1

k − 1

)
+ . . . +

(
as − 1

s

)
.

Recall Claim 12, which gives |F ′1| ≥ |∂F0|. Since F0 is a k-uniform family
of size smaller than m (since F is stable, F1 is non-empty), we can apply
the inner induction hypothesis to lower bound |∂F0|.14 Thus we have

|F ′1| ≥ |∂F0| ≥
(
ak − 1

k − 1

)
+

(
ak−1 − 1

k − 2

)
+. . .+

(
as − 1

s− 1

)
,

[
|F ′1| ≥

(
x− 1

k − 1

)
,

]
contradicting the falsity of the claim. Hence F ′1 must be as large as claimed,
completing the proof.

Thus the inner induction (on m) is proved, completing the outer induction (on k)
and, with it, the proof of Theorem 4 [Theorem 6].

Concluding remarks

The idea behind this beautiful proof is that it is enough to consider the shadow cast
by the sets containing 1 in a stable family. The proof is then double-inductive. We
first show that F ′1 cannot be small, using the induction on m to lower bound the size
of ∂F0. Once we know F ′1 is large, we can then show that the shadow of F has the
desired size, using the induction on k to lower bound the size of ∂F ′1.

As we noted earlier, had it been true that the only stable families are the ini-
tial segments of the colexicographic order C(m, k), then Claim 11 would already have
completed the proof. While this is not true, one can proof Theorem 4 with shifting
arguments alone. One needs to introduce compressions, which are more general shifting
operators. It is then possible to compress a family repeatedly until it becomes C(m, k).

14The eagle-eyed reader may object here: “If x ∈ [k, k + 1), then x− 1 < k, in which case we cannot
apply the induction hypothesis for the proof of Theorem 6!” A valid point, but you need not fear —
in this case, the conclusion of Claim 14 is trivia. Indeed, since |F0| >

(
x−1
k

)
≥ 0, F0 is non-empty.

Now observe that a single k-set in F0 contributes k sets to the shadow, and so, since x− 1 ∈ [k− 1, k),
|∂F0| ≥ k =

(
k

k−1

)
≥
(
x−1
k−1

)
, giving the desired lower bound without using the induction hypothesis.
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However, one must be careful while doing this, as the analogue of Claim 9 does not
hold in general — compressing a family could increase the size of its shadow. What
one can show, though, is that if the compressions are applied in the correct order, then
everything is well-behaved.

Finally, it is worth reiterating that the Kruskal–Katona Theorem is an incredibly
useful theorem to have in one’s arsenal. Aside from the extremal set theoretic applica-
tions you will encounter in the homework, the theorem is also used in Extremal Graph
Theory, Discrete Geometry and Algebra, to name but three examples.

This concludes our exposition of this wonderful theorem; that’s all there is, there
isn’t any more.
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