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Opening remarks

It is difficult, if not impossible, to overstate the importance and utility of Szemerédi’s
celebrated Regularity Lemma in Extremal Graph Theory, and yet I have never been
one to shy away from a challenge. To phrase it in terms of wider appeal, if we were
doctors1, the Regularity Lemma would be our antibiotics, the first and last line of
defence against a bacterial catastrophe.2 If we were engineers, the Regularity Lemma
would be a bottomless can of WD-40 combined with an endless roll of duct tape, the
solution to all our problems.3 If we were movie producers, the Regularity Lemma would
be Meryl Streep, guaranteeing our success.4

I could continue with these preliminary metaphors,5 but during my formative years
I was often told6 in school that one should “show, not tell.” Thus, rather than simply go
on and on about how great the Regularity Lemma is, I intend to give you a glimpse of
the Lemma in action through a couple of carefully-chosen applications. This selection
is far from exhaustive7 — think of it more as an appetiser in the feast that is the
Regularity Lemma. For a more thorough exploration of the subject, I encourage you
to turn to the excellent survey of Komlós and Simonovits8.

The Regularity Lemma (and its lemmas)

It would be logical, I suppose, to start by introducing the Regularity Lemma itself, and
since this is meant to be a mathematical document, one ought to take the logical path.
This section thus contains the necessary definitions, the statement of the Regularity
Lemma, and a few useful lemmas that help in applications.

Regularity and partitions

Informally, the Regularity Lemma tells us that the vertices of any large graph can be
partitioned into a bounded number of parts, with the subgraph between most pairs of
parts looking random. In order to state the Regularity Lemma formally, we must define
what it means to ‘look random.’

Definition (Density). Given a graph G = (V,E), and two disjoint non-empty sets of

1The useful, medical kind, not the degreed philosophers.
2http://www.bbc.com/news/health-21702647
3https://www.flickr.com/photos/dullhunk/7214525854
4http://www.imdb.com/name/nm0000658/awards
5Actually, I couldn’t, which is why I started this new paragraph.
6Ironically!
7About as far as San Francisco, USA, is from Cairns, Australia: 209 days of rowing.
8http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.31.2310
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vertices X, Y ⊂ V , we define the density of the pair (X, Y ) as

d(X, Y ) =
e(X, Y )

|X| |Y |
=
|{(x, y) : x ∈ X, y ∈ Y, {x, y} ∈ E}|

|X| |Y |
.

Definition (ε-regularity). Let ε > 0 be fixed. Given a graph G = (V,E), and two
disjoint non-empty sets of vertices A,B ⊂ V , we say the pair (A,B) is ε-regular if, for
every X ⊆ A with |X| ≥ ε |A| and every Y ⊆ B with |Y | ≥ ε |B|, we have

|d(X, Y )− d(A,B)| ≤ ε.

In other words, the edges in an ε-regular pair are distributed very uniformly, with
the density between any pair of reasonably large subsets of vertices being very close
to the overall density of the pair. This uniform distribution of edges is typical in a
random bipartite graph, and captures what we mean when we say a (bipartite) graph
‘looks random.’ It remains to define what kinds of partitions of the vertices we will be
concerned with.

Definition (Equipartition). A partition V = V0 t V1 t . . . t Vk of a vertex set into
disjoint parts, including an exceptional set V0, is said to be an equipartition if |V1| =
|V2| = . . . = |Vk|.

Note that we do not require the exceptional set V0 to be the same size as the other
parts, as that would require the number of vertices |V | to be divisible by k+1.9 Finally,
we have everything in place to define the kind of partition that the Regularity Lemma
will provide us.

Definition (ε-regular partition). Let ε > 0 be fixed, and let G = (V,E) be a graph. An
ε-regular partition is an equipartition V = V0 t V1 t . . .t Vk such that |V0| ≤ ε |V |, and
all but at most εk2 pairs (Vi, Vj), 1 ≤ i < j ≤ k, are ε-regular.

Note that the parameter ε plays three roles10 here: bounding the size of the excep-
tional set V0, bounding the number of irregular pairs, and controlling the regularity of
the regular pairs.

The statement of the Lemma

Observe that in an ε-regular partition, we have control over the distribution of edges
between the ε-regular pairs, but not over the edges within any of the parts, involving
the exceptional set, or in irregular pairs. Thus, in light of the three roles described
above, the smaller ε is, the greater our control over the distribution of edges in an
ε-regular partition.

9In fact, the exceptional set is only included to avoid these divisibility issues. One could state the
Regularity Lemma without an exceptional set, and instead require ||Vi| − |Vj || ≤ 1 for all 1 ≤ i < j ≤ k,
but the form we will use is a little more convenient to work with.

10Some versions of the Regularity Lemma use three different parameters for these, but we will not
require any such separation.
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On the other hand, observe that there are a couple of partitions that are trivially
ε-regular. The first is when V1 = V ; that is, when all the vertices are contained in a
single part where their edges are unrestricted. Thus, in order to have a useful partition,
we would like there to be many parts, so that most of the edges lie in an ε-regular pair
between different parts, where we have some control over their distribution. However,
another trivial ε-regular partition is when we consider every single vertex as its own
part. In this case, every pair has density either 0 or 1, and is trivially ε-regular for
every ε > 0, without giving any structural information about the graph at all. Thus we
want each part to have enough vertices for us to be able to make use of the regularity.
This is equivalent to not having too many parts.

The Regularity Lemma tells us that we can have everything we want11: every (large
enough) graph has an ε-regular partition with small ε and a large but bounded number
of parts.

Theorem 1 (The Regularity Lemma; Szemerédi, 1978). For every ε > 0 and every
t ∈ N, there exists an integer T = T (t, ε) such that every graph G = (V,E) on at least
T vertices has an ε-regular partition V = V0 t V1 t . . . t Vk, where t ≤ k ≤ T .

Useful little lemmas

As indicated above, the ε-regular partition of a graph G guaranteed by the Regularity
Lemma provides us with control over the distribution of the edges of G. The following
lemmas, used in most applications of the Regularity Lemma, translate that control into
more explicitly combinatorial terms.

Lemma 1 (Degree Lemma). Let (A,B) be an ε-regular pair with d(A,B) = d. For any
Y ⊆ B, |Y | ≥ ε |B|, we have

|{a ∈ A : deg(a, Y ) < (d− ε) |Y |}| < ε |A| ,

where deg(a, Y ) counts the number of neighbours of a in Y .

This first lemma states that in an ε-regular pair of density d, most vertices in one
part have close to the expected number of neighbours in any large enough subset of the
other part.12

Proof. Let X = {a ∈ A : deg(a, Y ) < (d− ε) |Y |}. Observe that

e(X, Y ) =
∑
a∈X

deg(a, Y ) < (d− ε) |X| |Y | ,

and so d(X, Y ) < d − ε. Thus |d(X, Y )− d(A,B)| > ε, violating the ε-regularity of
(A,B) if |X| ≥ ε |A|. Hence we must have |X| < ε |A|, as desired.

11How rarely we hear these words!
12Here we only impose a lower bound on deg(a, Y ), which is the bound we will need, but one can

prove a corresponding upper bound very similarly.
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The next lemma extends Lemma 1 by looking not just at the neighbours of one
vertex, but the common neighbours of an s-tuple of vertices. In a random bipartite
graph of density d on the vertices A tB,13 we would expect a set of s vertices in A to
have ds |Y | common neighbours in any set Y ⊂ B. This lemma again shows that this
random behaviour carries over to ε-regular pairs as well. Note that in order to get this
more detailed information (common neighbourhoods, and not just neighbourhoods), we
require the subset Y to be larger than before.

Lemma 2 (Common Neighbourhood Lemma). Let (A,B) be an ε-regular pair with
d(A,B) = d, and let s ∈ N be a positive integer. For any subset Y ⊆ B with
(d− ε)s−1 |Y | ≥ ε |B|, we have

|{~a = (a1, a2, . . . , as) ∈ As : |Y ∩N(~a)| < (d− ε)s |Y |}| < sε |A|s ,

where N(~a) = ∩si=1N(ai) is the common neighbourhood of the vertices in ~a.

Proof. This can be proven by induction on s, using Lemma 1 for the base case and
Lemma 3 in the induction step. The details are left to the reader.

The previous two lemmas show that the degrees of vertices and subsets of vertices in
an ε-regular pair behave as they would in a random bipartite graph. Another key feature
of random graphs is that their induced subgraphs are also random graphs, inheriting
the same distribution. Our final lemma shows that a similar inheritance takes place in
ε-regular pairs.

Lemma 3 (Slicing Lemma). Let (A,B) be an ε-regular pair with d(A,B) = d, and let
α > ε. If X ⊆ A, |X| ≥ α |A|, and Y ⊆ B, |Y | ≥ α |B|, then (X, Y ) is an ε′-regular
pair, where ε′ = max

{
ε
α
, 2ε
}

, and d(X, Y ) = d′ for some d′ with |d′ − d| ≤ ε.

Proof. First observe that since |X| ≥ ε |A|, and |Y | ≥ ε |B|, the ε-regularity of (A,B)
gives |d(X, Y )− d(A,B)| = |d′ − d| ≤ ε.

Now for any S ⊆ X, |S| ≥ ε′ |X| ≥ ε
α
|X| ≥ ε |A|, and T ⊆ Y , |T | ≥ ε′ |Y | ≥

ε |B|, the ε-regularity of (A,B) gives |d(S, T )− d(A,B)| ≤ ε. Hence, by the triangle
inequality,

|d(S, T )− d(X, Y )| ≤ |d(S, T )− d(A,B)|+ |d(A,B)− d(X, Y )| ≤ 2ε ≤ ε′.

Hence it follows that (X, Y ) is ε′-regular, as desired.

Note that, as one might expect, repeated applications of Lemma 3, which take us
to smaller and smaller subsets of the original ε-regular pair (A,B), provide worse and
worse control over the parameters of regularity. However, having some regularity allows
one to apply Lemmas 1 and 2 to these pairs of small subsets.

13In the binomial random bipartite graph model with density d, every possible edge appears inde-
pendently with probability d.
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Arithmetic progressions and Roth’s Theorem

One may wonder why Theorem 1, if it is as significant as I have earlier claimed, is
merely called a ‘Lemma.’ The answer lies in the history of the Lemma/Theorem. In
1975, Szemerédi proved what is now known as Szemerédi’s Theorem, resolving an old
conjecture of Erdős and Turán regarding arithmetic progressions in subsets of integers.
In proving this theorem, Szemerédi used a weaker form of Theorem 1, which appeared
as a lemma. It was some time before the true value of the Regularity Lemma was
realised, but in 1979 Szemerédi published the full version of Theorem 1, and the rest,
as they say, is history.

One ought to pay tribute to the origins of the Regularity Lemma, and so the first
application we shall study will be Szemerédi’s Theorem (Theorem 2 below). While the
full proof of Szemerédi’s Theorem is famously complex14, we will restrict our attention
to the first non-trivial case, a result that was earlier proven by Roth.

Arithmetic progressions

The Erdős–Turán conjecture concerns one of the fundamental objects in Combinatorial
Number Theory, the arithmetic progression.

Definition (Arithmetic progression). An arithmetic progression of length k, or k-AP,
with common difference d, is a sequence of k integers (a0, a1, . . . , ak−1) such that, for
every 1 ≤ i ≤ k − 1, ai − ai−1 = d.

For any natural numbers a, d ∈ N, there is a uniquely-defined k-AP with common
difference d starting at a, namely (a, a+d, . . . , a+(k−1)d). Even if we restrict ourselves
to the finite domain [n], the first n positive integers, we still find a large number of k-APs
(when n is large).

Being extremal combinators, Erdős and Turán asked the natural question: how large
can a subset A ⊂ [n] be if it does not contain any k-APs? They conjectured in 1936
that a k-AP-free set must have density approaching 0 (as n tends to infinity), and this
is what Szemerédi proved.

Theorem 2 (Szemerédi, 1975). Fix k ∈ N and α > 0. There exists some n0 = n0(k, α)
such that if n ≥ n0 and A ⊆ [n], |A| ≥ αn, then A contains a k-AP.

Observe that any two distinct numbers form a 2-AP, and hence the first non-trivial
(and therefore interesting) case is when k = 3. This case was settled in 1953 by Roth,
using techniques from analytic number theory.

Theorem 3 (Roth, 1953). For every α > 0, there is some n0 = n0(3, α) such that if
n ≥ n0 and A ⊆ [n], |A| ≥ αn, then A contains a 3-AP.

Although the Regularity Lemma came many years later, it provides a very clean
and simple proof of Theorem 3, as we shall see below.

14Szemerédi proved the case k = 4 of Theorem 2 in 1969, a good six years before settling the general
case, which perhaps gives some indication of its difficulty.
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Proof of Roth’s Theorem

At first sight, the Regularity Lemma does not seem like the right tool to use for Roth’s
Theorem, as the former deals with graphs while the latter is a statement about subsets
of integers. The connection between the two comes through the construction of an
auxiliary graph, where 3-APs in our subset correspond to triangles in our graph. We
will then need the following consequence of Theorem 1, which we shall prove later.

Theorem 4 (Triangle Removal Lemma). For every ε > 0, there is a δ = δ(ε) > 0 such
that if G is an n-vertex graph such that at least εn2 have to be removed from G before
it becomes triangle-free, then G has at least δn3 triangles.

Using this theorem, we can prove Roth’s Theorem.

Proof of Theorem 3. Given α > 0, let δ = δ
(
α
36

)
be as given by Theorem 4, and set

n0 = n0(3, α) = α
216δ

+ 1. Suppose we have some n ≥ n0, and a set A ⊆ [n] with
|A| = αn. We will show that A must contain a 3-AP.

Define an auxiliary three-partite graph G on the vertices V = V1 t V2 t V3, where
Vi = {(j, i) : 1 ≤ j ≤ in} for each 1 ≤ i ≤ 3. Hence V1 ∼= [n], V2 ∼= [2n], and V3 ∼= [3n],
and we have 6n vertices in total. We now add edges as follows: for every x ∈ [n] and
a ∈ A, add a triangle of edges between the vertices (x, 1), (x+ a, 2) and (x+ 2a, 3) (in
V1, V2 and V3 respectively). Observe that these triangles are all edge-disjoint, and hence
we have 3n |A| = 3αn2 edges. Furthermore, since these triangles are edge-disjoint, we
have to remove different edges to destroy each of these triangles, and hence have to
remove at least αn2 = α

36
(6n)2 edges to make G triangle-free. By Theorem 4, G has at

least δ(6n)3 = 216δn3 triangles in total.
We now claim that these triangles in G correspond to 3-APs in A. Suppose we have

a triangle on the vertices (x, 1), (y, 2) and (z, 3) (each set Vi is an independent set, any
triangle must consist of one vertex from each part). Since (x, 1) ∼ (y, 2), we must have
y = x+a0 for some a0 ∈ A. Since (x, 1) ∼ (z, 3), we must also have z = x+2a1 for some
a1 ∈ A. Finally, since (y, 2) ∼ (z, 3), we have z = y + a2 for some a2 ∈ A. Eliminating
x, y and z, we find a0 + a2 = 2a1, or a2 − a1 = a1 − a0. Hence, if a1 > a0, (a0, a1, a2)
forms a 3-AP with common difference d = a1 − a0. If a1 < a0, then (a2, a1, a0) forms a
3-AP with common difference d = a0 − a1.

The only case in which we do not find a 3-AP in A is when a0 = a1. However,
these triangles are precisely the edge-disjoint triangles we started with, of which there
are αn2. Since G contains at least 216δn3 > αn2 triangles, we can find one for which
a0 6= a1, giving the desired 3-AP in A.

Note that the proof actually shows G has Ω(n3) triangles for which a0 6= a1, which
corresponds to A containing Ω(n2) 3-APs (since each 3-AP contributes n different trian-
gles, one for each choice of x ∈ [n]). Hence any set A ⊂ [n] of positive density contains
very many 3-APs. It remains one of the major open problems in Combinatorial Num-
ber Theory to determine how large the largest 3-AP-free subset A ⊂ [n] can be. The
current best-known bounds are of the form

n exp
(
−c
√

log n
)
≤ |A| ≤ C (log log n)4

log n
n, for some constants c, C > 0.
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Proof of the Triangle Removal Lemma

It remains to prove the Triangle Removal Lemma, which we shall do now, so that it15

will remain no longer.

Proof of Theorem 4. Let ε and G be as in the statement of the theorem. First note
that since we must remove εn2 edges from G to make it triangle-free, G must have at
least one triangle. Since δn3 ≤ 1 when n ≤ δ−1/3, we are done unless n > δ−1/3. By
choosing δ sufficiently small, we can ensure that n is large enough for the following
arguments to apply.

In particular, we may assume n ≥ T = T (t, ε0), where ε0 = ε
10

and t = 1
ε0

. Applying
Theorem 1, we obtain an ε0-regular parition V0tV1t. . .tVk of V (G), where the number
of parts satisfies t ≤ k ≤ T . Our next step is typical of proofs using the Regularity
Lemma: we find a ‘clean’ subgraph G0 ⊂ G, which only contains edges in dense regular
pairs of the ε0-regular partition of G. Let G0 be the subgraph of G that remains after
we delete the edges:

(i) incident to the exceptional set V0,

(ii) contained inside one of the parts Vi, 1 ≤ i ≤ k,

(iii) contained in an irregular pair (Vi, Vj), 1 ≤ i < j ≤ k, and

(iv) contained in an ε0-regular pair (Vi, Vj) of density at most ε.

Observe that all edges in G0 are contained in ε0-regular pairs (Vi, Vj) of density
greater than ε. We now bound the number of edges of G that were deleted. In Step (i),
each exceptional vertex has degree at most n, and there are at most ε0n exceptional
vertices, and hence we lost at most ε0n

2 edges. In Step (ii), observe that |Vi| ≤ n
k
, and

hence there are at most
∑k

i=1

(|Vi|
2

)
≤ k

(n
k
2

)
≤ n2

2k
≤ n2

2t
< ε0n

2 edges deleted. Since

there are at most ε0k
2 irregular pairs, we lose at most ε0k

2
(
n
k

)2
= ε0n

2 edges in Step

(iii). Finally, there can be at most
(
k
2

)
regular pairs of low density, each of which has

at most ε
(
n
k

)2
edges, and hence we lost at most ε

(
k
2

) (
n
k

)2 ≤ 1
2
εn2 edges in Step (iv).

In total, therefore, G0 has at most
(
1
2
ε+ 3ε0

)
n2 < εn2 fewer edges than G. As we

have removed fewer than εn2 edges, G0 must still contain a triangle. Each vertex of
this triangle must come from a different non-exceptional part of the partition; without
loss of generality we may assume the parts are V1, V2 and V3. We further know that
each pair (Vi, Vj), 1 ≤ i < j ≤ 3, is ε0-regular with density greater than ε. We will now
show that there must in fact be at least δn3 triangles between these parts, for some
appropriate value of δ.

Indeed, by Lemma 1, we know that all but at most ε0 |V1| vertices in V1 have at
least (ε− ε0) |V2| neighbours in V2. Similarly, all but at most ε0 |V1| vertices in V1 have
at least the same number16 of neighbours in V3. Putting these two statements together,

15The overdue proof, not the Lemma itself, which, like all mathematical truths, will endure for
eternity, if not longer.

16Recall that |V1| = |V2| = |V3|.
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at least (1 − 2ε0) |V1| vertices in V1 have at least (ε − ε0) |V2| neighbours in V2 and at
least the same number in V3.

Let v1 be any such vertex in V1, and let N2 and N3 be its neighbourhoods in V2 and V3
respectively. Since |Ni| ≥ (ε−ε0) |Vi| > ε0 |Vi| for i ∈ {2, 3}, the ε0-regularity of (V2, V3)
implies d(N2, N3) ≥ d(V2, V3)− ε0 ≥ ε− ε0. Hence there are at least (ε− ε0) |N2| |N3|
edges between N2 and N3, each of which extends to a triangle when adding v. Moreover,
for each different choice of v, these triangles are distinct.

Altogether, therefore, we find at least

(1− 2ε0) |V1| (ε− ε0) ((ε− ε0) |V2|)2 = (1− 2ε0)(ε− ε0)3 |V1|3

triangles between V1, V2 and V3. Finally, note that |V1| = n−|V0|
k
≥ 1−ε0

T
n, and hence

we have at least δn3 triangles, provided we choose δ = (1− 2ε0)(1− ε0)3(ε− ε0)3T−3.
(Note that for this choice of δ, when n > δ−1/3 we have n > T , as required to apply
Theorem 1.)

From the combinatorial point of view, the Triangle Removal Lemma would certainly
be a very interesting statement even without any number theoretic applications, and
hence at the very least merits a few additional remarks. The first is to note that there
is nothing special about the triangle, and one can prove a Removal Lemma for general
graphs along the same lines — a worthwhile exercise!

Second, when one is proving something using the Regularity Lemma, one should
always bear in mind that the Regularity Lemma is a very powerful tool.17 The price one
pays for this is that the constants involved are typically terrible. Thus, once you have
proven the statement to be true, the next goal is to find a proof without the Regularity
Lemma, which often will result in much better dependence of the parameters.18 While
we have not discussed the sizes of the parameters in the Regularity Lemma in this note,
it is worth pointing out that there are now more direct proofs of the Removal Lemma
with much better quantitative bounds.

Turán numbers and the Erdős–Stone–Simonovits Theorem

For our second19 application, we return to our roots and visit one of the fundamental
areas of Extremal Graph Theory: Turán Theory. As with our first example, the theo-
rems here predate Theorem 1, but looking back through our Regularity-tinted glasses,
we find this is precisely the kind of problem the Regularity Lemma helps us solve.

Turán numbers

The quintessential extremal question in Graph Theory asks, for a fixed graph F , how
many edges an n-vertex graph can have without containing a copy of F .

17It is like playing a video game with the easiest level of difficulty and all its cheat codes activated.
18From a purely mathematical perspective, it is also nice to use the ‘right’ tools for the job, and, as

one of my professors used to say, not use a sledgehammer to open a walnut.
19And last, because I want to finish this note before the course ends.
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Definition (Turán number). The Turán number (or extremal number) of a graph F ,
denoted ex(n, F ), is the maximum number of edges in an n-vertex F -free graph.

Turán greatly extended Mantel’s Theorem by determining the Turán numbers of
all complete graphs, thus kickstarting the field of Extremal Graph Theory. In Turán’s
Theorem, the following graphs play a pivotal role.

Definition (Turán graph). The r-partite Turán graph on n vertices, denoted Tn,r, is
the complete r-partite n-vertex graph, with vertex parts as equal as possible (and hence
of size

⌊
n
r

⌋
or
⌈
n
r

⌉
).

Since Tn,r is r-colourable, and Kr+1 is not, it follows that Kr+1 6⊆ Tn,r. Turán
showed that Tn,r is the largest graph not containing Kr+1, extending Mantel’s result
(which showed Tn,2 = Kdn2 e,bn2 c is the largest K3-free graph).

Theorem 5 (Turán, 1941). For all r, n ∈ N, ex(n,Kr+1) = e(Tn,r). Furthermore, if G
is a Kr+1-free graph with n vertices and ex(n,Kr+1) edges, then G ∼= Tn,r.

The Erdős–Stone–Simonovits Theorem

Once we have Turán’s Theorem, the natural20 question to ask is what happens for
other graphs; while it is certainly worth knowing the Turán numbers of all complete
graphs, the fact remains that most graphs are incomplete. The Erdős–Stone–Simonovits
Theorem provides an asymptotic answer, showing that the Turán number ex(n, F ) is,
in general, controlled by the chromatic number χ(F ).

Theorem 6 (The Erdős–Stone–Simonovits Theorem; Erdős–Simonovits, 1966). Let F

be a graph with χ(F ) ≥ 2. Then ex(n, F ) =
(

1− 1
χ(F )−1 + o(1)

) (
n
2

)
.

Note that if χ(F ) = 2 (that is, if F is bipartite), then Theorem 6 only tells us that
ex(n, F ) = o(n2). Even determining the order of magnitude, let alone the asymptotics,
of the Turán numbers of bipartite graphs remains one of the outstanding problems of
Extremal Graph Theory, but that is a story for another day21.

When χ(F ) ≥ 3, Theorem 6 is much more satisfying, as it provides the asymptotic
value of ex(n, F ). The lower bound comes from the Turán graphs: since χ(Tn,χ(F )−1) =
χ(F )− 1 < χ(F ), F 6⊆ Tn,χ(F )−1. The lower bound then follows from a straightforward

calculation that shows e(Tn,χ(F )−1) =
(

1− 1
χ(F )−1 + o(1)

) (
n
2

)
.

The work, then, comes in proving the upper bound: that dense enough graphs must
contain a copy of F . However, this is where the strange naming of the theorem is
explained. In 1966, Erdős and Simonovits observed that a theorem of Erdős and Stone,
twenty years old at the time, easily gives a matching upper bound.

Theorem 7 (Erdős–Stone, 1946). For any r, s ∈ N and ε > 0, there exists an
n0 = n0(r, s, ε) such that if n ≥ n0 and G is a graph with n vertices and at least(
1− 1

r−1 + ε
) (

n
2

)
edges, G contains the Turán graph Trs,r.

20Where here “natural” is defined as “what follows in this note.”
21Indeed, for another course.
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With this theorem in hand, we can now prove the Erdős–Stone–Simonovits Theorem.

Proof of Theorem 6. We already have the lower bound

ex(n, F ) ≥ e(Tn,χ(F )−1) =

(
1− 1

χ(F )− 1
+ o(1)

)(
n

2

)
,

and now seek to show ex(n, F ) ≤
(

1− 1
χ(F )−1 + o(1)

) (
n
2

)
. This is equivalent to showing

that for every ε > 0 and n sufficiently large, ex(n, F ) ≤
(

1− 1
χ(F )−1 + ε

) (
n
2

)
.

Fix ε > 0, let r = χ(F ), and set s = |V (F )|. Observe that F ⊂ Trs,r, since we
can embed each colour class of an r-colouring of F into a different part of Trs,r. By
Theorem 7, if n ≥ n0(r, s, ε), then any n-vertex graph G with at least

(
1− 1

r−1 + ε
) (

n
2

)
edges contains Trs,r, and hence F , as a subgraph. Thus ex(n, F ) <

(
1− 1

r−1 + ε
) (

n
2

)
,

as desired.

Proof of the Erdős–Stone Theorem

All the hard work, then, must come in the proof of Theorem 7. However, with the
Regularity Lemma, it becomes a slice of cake! We will use the following proposition,
whose proof we defer to the end of this section.

Proposition 1. Let r, s ∈ N and ε ∈
(
0, 1

2

)
be fixed. For each 1 ≤ ` ≤ r, set

ε` =
(
ε
4

)(`−1)s
, n` = sε−1` and d` = ε

4
+
∑`

i=2 εi. If V1, V2, . . . , Vr are disjoint sets of
vertices in a graph G such that each set has size |Vi| ≥ nr and each pair (Vi, Vj),
1 ≤ i < j ≤ r, is εr-regular with density at least dr, then Trs,r ⊂ G.

Proof of Theorem 7. If r = 1, then any s vertices provide a copy of Ts,1, and so we may
take n0 = s. If s = 1, then Tr,r = Kr−1, and so we are done by Theorem 5. Hence we
may assume r, s ≥ 2. Without loss of generality, we may further assume ε < 1

2
, as we

may certainly reduce ε if needed. Set n0(r, s, ε) = (1− εr)−1nrT (ε−1r , εr), where εr and
nr are as in Proposition 1, and T (t, ε) is the function from Theorem 1. Let n ≥ n0, and
let G be an n-vertex graph with at least

(
1− 1

r−1 + ε
) (

n
2

)
edges. Our goal is to show

Trs,r ⊂ G.
Applying Theorem 1 to G with parameters εr and t = ε−1r , we obtain an εr-regular

partition V0 t V1 t . . . t Vk of V (G), where ε−1r ≤ k ≤ T (ε−1r , εr). We find a ‘clean’
subgraph G′ of G by removing the edges:

(i) incident to the exceptional set V0,

(ii) contained inside one of the parts Vi, 1 ≤ i ≤ k,

(iii) contained in an irregular pair (Vi, Vj), 1 ≤ i < j ≤ k, and

(iv) contained in an εr-regular pair (Vi, Vj) of density at most 3ε
4

.
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In this process, we remove at most
(
3ε
8

+ 3εr
)
n2 ≤ 31ε

32

(
n
2

)
edges from G,22 and hence

e(G′) ≥
(
1− 1

r−1 + ε
32

) (
n
2

)
> e(Tn,r−1). By Theorem 5, Kr ⊂ G′.

The only edges of G′ are contained in εr-regular pairs of density greater then 3ε
4

,
which itself is at least dr (where dr is as in Proposition 1). Hence each vertex of the
clique Kr must come from a different part in the partition, which we may assume to be
the first r non-exceptional parts. Thus for 1 ≤ i < j ≤ r, the pair (Vi, Vj) is εr-regular

with density at least dr. Moreover, we have |Vi| = n−|V0|
k
≥ 1−εr

T
n ≥ nr.

Therefore the conditions of Proposition 1 are satisfied, implying Trs,r ⊂ G′ ⊆ G.

To complete the chain of proofs leading to Theorem 6, we now prove Proposition 1.

Proof of Proposition 1. We prove this proposition by induction on r. The base case
r = 1 is trivial, as |V1| ≥ n1 = s, and any s vertices in V1 form a copy of Ts,1.

Now suppose r ≥ 2. Our plan is to find s suitable vertices in Vr, and then use
induction on their common neighbourhoods in V1, V2, . . . , Vr−1. By Lemma 2, there
are at most sεr |Vr|s s-tuples of vertices in Vr with fewer than (dr − εr)

snr common
neighbours in Vi, for each 1 ≤ i ≤ r − 1. Hence there are at most (r − 1)sεr |Vr|s
s-tuples of vertices in Vr with fewer than (dr − εr)snr common neighbours in some Vi,
1 ≤ i ≤ r − 1. The number of s-tuples of vertices in Vr with a repeated vertex is at
most

(
s
2

)
|Vr|s−1 < sεr |Vr|s. Hence the number of s-tuples of s distinct vertices in Vr

with at least (dr − εr)snr common neighbours in Vi for each 1 ≤ i ≤ r − 1 is at least
(1− rsεr) |Vr|s > 0.

Fix any such set Sr of s vertices, and for each 1 ≤ i ≤ r − 1, let V ′i be the set of
common neighbours of Sr in Vi. We wish to apply induction to the sets V ′1 , V

′
2 , . . . , V

′
r−1,

finding subsets S1, S2, . . . , Sr−1 that form a copy of T(r−1)s,r−1. Adding the common
neighbours Sr would then give the desired copy of Trs,r in G. First, though, we must
ensure that the conditions of Proposition 1 are satisfied.

Observe that dr − εr = dr−1 ≥ ε
4
. Hence each set has size at least (dr − εr)snr ≥(

ε
4

)s
nr = nr−1. Furthermore, by Lemma 3, each pair (V ′i , V

′
j ), 1 ≤ i < j ≤ r − 1, is

ε′-regular of density d′, where ε′ = max
{

εr
(dr−εr)s , 2ε

}
= εr

(dr−εr)s ≤ εr
(
ε
4

)−s
= εr−1 and

d′ ≥ dr − εr = dr−1. Thus the conditions are indeed satisfied.

Concluding statement

It is my sincere hope that this little note has helped developed your appreciation of the
Szemerédi Regularity Lemma, and also shown you how the Regularity Lemma can be
used to prove other theorems. Here, despite seeing a couple of famous consequences,
we have barely scratched the surface of applications of the Regularity Lemma.23 In
closing, I wholeheartedly encourage you to explore the subject further!

22See the proof of Theorem 4 for details.
23If the set of applications of the Regularity Lemma were the Black Knight24, it would no doubt

say, “‘tis but a scratch,” and invite us to delve further, but it is not, so it will not.
24If it were instead the Dark Knight, it would give rise to one of the most epic film trilogies of our

time. I, for one, would pay good money to see a series of movies on the Regularity Lemma, especially
if DiCaprio were to play the role of ε.
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