Solution to Exercise Sheet 15, Exercise 1

Exercise 1 Recall the statement of the Lovász Local Lemma we had in class.
Theorem 1 (Lovász Local Lemma). Let $E_{1}, E_{2}, \ldots, E_{m}$ be events in some probability space. Let $d \in \mathbb{N}$ and $p \in[0,1]$ be such that, for every $i \in[m]$, we have
(1) $\mathbb{P}\left(E_{i}\right) \leq p$, and
(2) there is a set $\Gamma(i) \subseteq[m] \backslash\{i\}$ of at most d indices, such that the event E_{i} is mutually independent of $\left\{E_{j}: j \in[m] \backslash(\Gamma(i) \cup\{i\})\right\}$.

If ep $(d+1) \leq 1$, then with positive probability none of the events E_{i} occur.
In this exercise you will prove Theorem 1 .
(a) Show that for any $i \in[m]$ and $J \subseteq[m] \backslash\{i\}$, we have $\mathbb{P}\left(E_{i} \mid \cap_{j \in J} E_{j}^{c}\right) \leq e p$. You may use the estimate $(1-1 /(d+1))^{d} \geq e^{-1}$.
(b) Deduce that $\mathbb{P}\left(\cap_{i \in[m]} E_{i}^{c}\right) \geq(1-e p)^{m}>0$.
$\underline{\text { Solution: }}$ For convenience, given a subset $S \subseteq[m]$ of the events, we let $E_{S}^{c}=\cap_{i \in S} E_{i}^{c}$ be the event that none of the events indexed by S occur.
(a) We wish to show that for any $i \in[m]$ and $J \subseteq[m] \backslash\{i\}$, we have $\mathbb{P}\left(E_{i} \mid E_{J}^{c}\right) \leq e p$. We shall do so by induction on $|J|$. Let $I=\Gamma(i) \cap J$, so that E_{i} is mutually independent of $\left\{E_{j}: j \in J \backslash I\right\}$.
First, consider the case $I=\emptyset$ (which contains the base case, $|J|=0$). In this case, E_{i} is independently of $\left\{E_{j}: j \in J\right\}$, and so $\mathbb{P}\left(E_{i} \mid E_{J}^{c}\right)=\mathbb{P}\left(E_{i}\right) \leq p<e p$, as required.
Otherwise, we have

$$
\mathbb{P}\left(E_{i} \mid E_{J}^{c}\right)=\frac{\mathbb{P}\left(E_{i} \cap E_{I}^{c} \mid E_{\backslash \backslash I}^{c}\right)}{\mathbb{P}\left(E_{I}^{c} \mid E_{J \backslash I}^{c}\right)} .
$$

For the numerator, $\mathbb{P}\left(E_{i} \cap E_{I}^{c} \mid E_{J \backslash I}^{c}\right) \leq \mathbb{P}\left(E_{i} \mid E_{J \backslash I}^{c}\right)=\mathbb{P}\left(E_{i}\right) \leq p$. For the denominator, suppose we have $I=\left\{i_{1}, i_{2}, \ldots, i_{s}\right\}$, where $s=|I| \geq 1$. We then have

$$
\mathbb{P}\left(E_{I}^{c} \mid E_{J \backslash I}^{c}\right)=\prod_{\ell=1}^{s} \mathbb{P}\left(E_{i_{\ell}}^{c} \mid E_{i_{1}}^{c}, \ldots, E_{i_{\ell-1}}^{c}, E_{J \backslash I}^{c}\right)=\prod_{\ell=1}^{s}\left(1-\mathbb{P}\left(E_{i_{\ell}} \mid E_{i_{1}}^{c}, \ldots, E_{i_{\ell-1}}^{c}, E_{J \backslash I}^{c}\right)\right) .
$$

For each factor in this product, we may apply the induction hypothesis, since $|J \backslash I|+$ $\ell-1 \leq|J \backslash I|+s-1=|J|-1$. This shows each factor is at least $1-e p$, and so the denominator is at least $(1-e p)^{|I|}$.
Now observe that $|I| \leq|\Gamma(i)| \leq d$, and recall that ep $\leq \frac{1}{d+1}$, and so the denominator is at least $\left(1-\frac{1}{d+1}\right)^{d} \geq e^{-1}$. This shows

$$
\mathbb{P}\left(E_{i} \mid E_{J}^{c}\right)=\frac{\mathbb{P}\left(E_{i} \cap E_{I}^{c} \mid E_{J \backslash I}^{c}\right)}{\mathbb{P}\left(E_{I}^{c} \mid E_{J \backslash I}^{c}\right)} \leq \frac{p}{e^{-1}}=e p,
$$

as required. This completes the induction.
(b) If we let $[0]=\emptyset$, we have

$$
\mathbb{P}\left(E_{[m]}^{c}\right)=\prod_{i=1}^{m} \mathbb{P}\left(E_{i}^{c} \mid E_{[i-1]}^{c}\right)=\prod_{i=1}^{m}\left(1-\mathbb{P}\left(E_{i} \mid E_{[i-1]}^{c}\right)\right) \geq(1-e p)^{m}>0,
$$

where we use part (a) for the penultimate inequality.

