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Solution to Exercise Sheet 15, Exercise 2

Exercise 2 Recall that the Ramsey number R(k, k) is the smallest n such that any two-
colouring of the edges of Kn must contain a monochromatic copy of Kk.

(a) By colouring edges randomly, show that if
(
n
k

)
21−(k

2) < 1, then R(k, k) > n. Deduce

that R(k, k) ≥ 1
e
√
2
(1 + o(1))k2k/2. [This is from Discrete Math I.]

(b) Obtain a
√

2-factor improvement of the result in (a) by ‘correcting’ a random colouring
by removing a vertex from every monochromatic clique: show that for any integer n,

R(k, k) > n−
(
n
k

)
21−(k

2). Deduce that R(k, k) ≥ 1
e

(1 + o(1)) k2k/2.

(c) Improve the bound by yet another
√

2-factor with the Local Lemma: show that if

e
(
k
2

)(
n−2
k−2

)
21−(k

2) ≤ 1, then R(k, k) > n. Deduce the bound R(k, k) ≥
√
2
e

(1 + o(1))k2k/2.

Solution:

(a) Given n, and consider colouring the edges of Kn independently, uniformly at random.
For a given set of k vertices, the probability they induce a monochromatic clique is

21−(k
2), since there are two possible colours, and each of the

(
k
2

)
edges will be given

that colour with probability 1/2. As there are
(
n
k

)
sets of k vertices, the expected

number of monochromatic cliques of size k is
(
n
k

)
21−(k

2). By assumption, this is strictly
less than 1, which is only possible if there is some edge-colouring of Kn without any
monochromatic k-clique. Hence we must have R(k, k) > n.

To get a good lower bound on R(k, k), we need to choose n as large as possible while(
n
k

)
21−(k

2) < 1 holds. We can bound the left-hand side by

(
n

k

)
21−(k

2) ≤
(ne
k

)k
21−(k

2) = 2

(
ne
√

2

k2k/2

)k

.

Thus if n = 2−1/k

e
√
2
k2k/2 = 1

e
√
2
(1 + o(1))k2k/2, the above expression is equal to 1, and so

we deduce R(k, k) > 1
e
√
2
(1 + o(1))k2k/2.

(b) For larger n, the expected number of monochromatic cliques will be large, so we cannot
hope to find a monochromatic-k-clique-free Kn by taking a random edge colouring.
However, if the number of monochromatic cliques is not too large, we can remove a

1



vertex from each such clique to be left with a good colouring on a smaller (but not too
small) number of vertices.

Indeed, if we start with n vertices, and remove one vertex from every monochro-

matic clique, we would on average be left with at least n −
(
n
k

)
21−(k

2) vertices, show-
ing there exists a monochromatic-k-clique-free graph of at least that size, and hence

R(k, k) ≥ n−
(
n
k

)
21−(k

2) ≥ n− 2
(

ne
√
2

k2k/2

)k
.

As before, to get a good bound on R(k, k), we should choose n to maximise this lower
bound. Differentiating with respect to n and setting the derivate equal to 0, we find

2(3−k)/2e

(
ne
√

2

k2k/2

)k−1

= 1,

or

n =
2(k−3)/(2k−2)e−1/(k−1)

e
√

2
k2k/2 ∼ 1

e
(1 + o(1))k2k/2,

which, after some calculation, gives the required bound on R(k, k).

(c) For the final1 improvement, we make use of the Lovász Local Lemma. Once again,
we shall colour the edges of Kn independently and uniformly at random. For each set
K ⊂ V (Kn) of k vertices, let EK be the event that k-clique on K is monochromatic.

As before, we have P(EK) = 21−(k
2).

The event EK is determined by the edges supported on K, and hence is mutually
independent of {EK′ : |K ∩K ′| ≤ 1}, since these events do not depend on any of
the edges of K. Thus the number of events that EK is not mutually independent of
(including EK itself) is at most

(
k
2

)(
n−2
k−2

)
, since we must choose some edge of K that

they have in common, and then can choose the remaining k − 2 vertices freely.

Taking these values as p and d + 1 respectively, it follows from the Local Lemma that
if

e

(
k

2

)(
n− 2

k − 2

)
21−(k

2) ≤ 1,

then with positive probability our random colouring of Kn will not have any monochro-
matic k-cliques, and thus R(k, k) > n.

Asymptotically, the left-hand side is

ek2

(
ne

k − 2

)k−2

2−k(k−1)/2 =
ek2

2

(
ne

(k − 2)2(k+1)/2

)k−2

.

This will be smaller than 1 when n =
√
2
e

(1 + o(1))k2k/2, as claimed.

1Indeed, despite turning 40 this year, this bound (due to Spencer) remains the best-known lower bound.
While that may seem a long time without progress, I’d like to point out that its been a good 48 years since
the lunar landing, in which time we still haven’t got past first base with the moon.
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