Solution to Exercise Sheet 15, Exercise 2

Exercise 2 Recall that the Ramsey number $R(k, k)$ is the smallest n such that any twocolouring of the edges of K_{n} must contain a monochromatic copy of K_{k}.
(a) By colouring edges randomly, show that if $\binom{n}{k} 2^{1-\binom{k}{2}}<1$, then $R(k, k)>n$. Deduce that $R(k, k) \geq \frac{1}{e \sqrt{2}}(1+o(1)) k 2^{k / 2}$. [This is from Discrete Math I.]
(b) Obtain a $\sqrt{2}$-factor improvement of the result in (a) by 'correcting' a random colouring by removing a vertex from every monochromatic clique: show that for any integer n, $R(k, k)>n-\binom{n}{k} 2^{1-\binom{k}{2}}$. Deduce that $R(k, k) \geq \frac{1}{e}(1+o(1)) k 2^{k / 2}$.
(c) Improve the bound by yet another $\sqrt{2}$-factor with the Local Lemma: show that if $e\binom{k}{2}\binom{n-2}{k-2} 2^{1-\binom{k}{2}} \leq 1$, then $R(k, k)>n$. Deduce the bound $R(k, k) \geq \frac{\sqrt{2}}{e}(1+o(1)) k 2^{k / 2}$.

Solution:

(a) Given n, and consider colouring the edges of K_{n} independently, uniformly at random. For a given set of k vertices, the probability they induce a monochromatic clique is $2^{1-\binom{k}{2}}$, since there are two possible colours, and each of the $\binom{k}{2}$ edges will be given that colour with probability $1 / 2$. As there are $\binom{n}{k}$ sets of k vertices, the expected number of monochromatic cliques of size k is $\binom{n}{k} 2^{1-\binom{k}{2}}$. By assumption, this is strictly less than 1 , which is only possible if there is some edge-colouring of K_{n} without any monochromatic k-clique. Hence we must have $R(k, k)>n$.
To get a good lower bound on $R(k, k)$, we need to choose n as large as possible while $\binom{n}{k} 2^{1-\binom{k}{2}}<1$ holds. We can bound the left-hand side by

$$
\binom{n}{k} 2^{1-\binom{k}{2}} \leq\left(\frac{n e}{k}\right)^{k} 2^{1-\binom{k}{2}}=2\left(\frac{n e \sqrt{2}}{k 2^{k / 2}}\right)^{k} .
$$

Thus if $n=\frac{2^{-1 / k}}{e \sqrt{2}} k 2^{k / 2}=\frac{1}{e \sqrt{2}}(1+o(1)) k 2^{k / 2}$, the above expression is equal to 1 , and so we deduce $R(k, k)>\frac{1}{e \sqrt{2}}(1+o(1)) k 2^{k / 2}$.
(b) For larger n, the expected number of monochromatic cliques will be large, so we cannot hope to find a monochromatic- k-clique-free K_{n} by taking a random edge colouring. However, if the number of monochromatic cliques is not too large, we can remove a
vertex from each such clique to be left with a good colouring on a smaller (but not too small) number of vertices.
Indeed, if we start with n vertices, and remove one vertex from every monochromatic clique, we would on average be left with at least $n-\binom{n}{k} 2^{1-\binom{k}{2}}$ vertices, showing there exists a monochromatic- k-clique-free graph of at least that size, and hence $R(k, k) \geq n-\binom{n}{k} 2^{1-\binom{k}{2}} \geq n-2\left(\frac{n e \sqrt{2}}{k 2^{k / 2}}\right)^{k}$.
As before, to get a good bound on $R(k, k)$, we should choose n to maximise this lower bound. Differentiating with respect to n and setting the derivate equal to 0 , we find

$$
2^{(3-k) / 2} e\left(\frac{n e \sqrt{2}}{k 2^{k / 2}}\right)^{k-1}=1
$$

or

$$
n=\frac{2^{(k-3) /(2 k-2)} e^{-1 /(k-1)}}{e \sqrt{2}} k 2^{k / 2} \sim \frac{1}{e}(1+o(1)) k 2^{k / 2},
$$

which, after some calculation, gives the required bound on $R(k, k)$.
(c) For the fina ${ }^{1}$ improvement, we make use of the Lovász Local Lemma. Once again, we shall colour the edges of K_{n} independently and uniformly at random. For each set $K \subset V\left(K_{n}\right)$ of k vertices, let E_{K} be the event that k-clique on K is monochromatic. As before, we have $\mathbb{P}\left(E_{K}\right)=2^{1-\binom{k}{2}}$.
The event E_{K} is determined by the edges supported on K, and hence is mutually independent of $\left\{E_{K^{\prime}}:\left|K \cap K^{\prime}\right| \leq 1\right\}$, since these events do not depend on any of the edges of K. Thus the number of events that E_{K} is not mutually independent of (including E_{K} itself) is at most $\binom{k}{2}\binom{n-2}{k-2}$, since we must choose some edge of K that they have in common, and then can choose the remaining $k-2$ vertices freely.
Taking these values as p and $d+1$ respectively, it follows from the Local Lemma that if

$$
e\binom{k}{2}\binom{n-2}{k-2} 2^{1-\binom{k}{2}} \leq 1
$$

then with positive probability our random colouring of K_{n} will not have any monochromatic k-cliques, and thus $R(k, k)>n$.
Asymptotically, the left-hand side is

$$
e k^{2}\left(\frac{n e}{k-2}\right)^{k-2} 2^{-k(k-1) / 2}=\frac{e k^{2}}{2}\left(\frac{n e}{(k-2) 2^{(k+1) / 2}}\right)^{k-2} .
$$

This will be smaller than 1 when $n=\frac{\sqrt{2}}{e}(1+o(1)) k 2^{k / 2}$, as claimed.

[^0]
[^0]: ${ }^{1}$ Indeed, despite turning 40 this year, this bound (due to Spencer) remains the best-known lower bound. While that may seem a long time without progress, I'd like to point out that its been a good 48 years since the lunar landing, in which time we still haven't got past first base with the moon.

