Algorithmic Combinatorics Shagnik Das

Exercise Sheet 10

Due date: 14:00, Jan 17th, by the end of the lecture. Late submissions will feed my fireplace.¹

You should try to solve all of the exercises below, and submit two solutions to be graded — each problem is worth 10 points. We encourage you to submit in pairs, but please remember to indicate the author of each individual solution.

Exercise 1 Use the simplex algorithm to solve the following linear program.

maximise $x_1 + 2x_2$ subject to $-2x_1 + 2x_2 \ge 2$, $2x_1 + x_2 \le 2$, $x_1 \in \mathbb{R}, x_2 \ge 0$.

Exercise 2 Dantzig originally suggested that the entering variable be the one with the largest coefficient r_i . By considering the following linear program, show that the simplex algorithm can indeed cycle with this pivot rule.

maximise $46x_1 + 43x_2 - 271x_3 - 8x_4$ subject to $2x_1 + x_2 - 7x_3 - x_4 \le 0$, $-39x_1 - 7x_2 + 39x_3 + 2x_4 \le 0$, $\vec{x} \ge \vec{0}$.

Exercise 3 While running the simplex algorithm we arrive at a feasible basis B with simplex tableau $\mathcal{T}(B)$

$$\vec{x}_B = \vec{p} + Q\vec{x}_N$$
$$z = z_0 + \vec{r} \,^T \vec{x}_N$$

has parameters $\vec{p} = (p_i)_{i \in B} \in \mathbb{R}^m$, $Q = (q_{i,j})_{i \in B, j \in N} \in \mathbb{R}^{m \times (n-m)}$, $\vec{r} = (r_j)_{j \in N} \in \mathbb{R}^{n-m}$ and $z_0 \in \mathbb{R}$. Suppose that this solution is not optimal, and we pivot to a basis $B' = B \setminus \{u\} \cup \{v\}$. Let $\mathcal{T}(B')$ be the new tableau, with parameters \vec{p}', Q', \vec{r}' and z'_0 . Find formulae for $p'_i, q'_{i,j}, r'_i$ and z'_0 in terms of $p_i, q_{i,j}, r_i$ and z_0 .

¹Just kidding, I don't have a fireplace, but I'll burn them anyway.

Exercise 4 Suppose that while running the simplex algorithm, we perform a valid pivot from some basic feasible solution \vec{x}_0 . Prove that the resulting solution \vec{x}_1 is also a basic feasible solution.

[Hint at http://discretemath.imp.fu-berlin.de/DMII-2016-17/hints/S10.html.]

Exercise 5 Consider the linear program

maximise $\vec{c}^T \vec{x}$ subject to $A\vec{x} = \vec{b}, \vec{x} \ge \vec{0}$.

- (a) A set $X \subseteq \mathbb{R}^n$ is said to be *convex* if whenever $\vec{x}, \vec{y} \in X$ and $\alpha \in [0, 1]$, we have $\alpha \vec{x} + (1 \alpha)\vec{y} \in X$ as well. Show that the set of feasible solutions to our linear program is convex.
- (b) As the intersection of finitely many half-spaces, the feasible set is in fact a convex *polyhedron* in \mathbb{R}^n . A vertex of a polyhedron P is a point $\vec{v} \in P$ such that there is some vector $\vec{c} \in \mathbb{R}^n$ with $\vec{c} \ ^T \vec{v} > \vec{c} \ ^T \vec{y}$ for all $\vec{y} \in P \setminus {\{\vec{v}\}}$. Prove that \vec{x} is a vertex of the feasible set for our linear program if and only if it is a basic feasible solution.

Exercise 6 Consider the linear $\operatorname{program}^2$

maximise
$$\sum_{i=1}^{m} x_i$$

subject to $2\sum_{i=1}^{k-1} x_i + x_k + x_{m+k} = 2^k - 1$, for all $1 \le k \le m$,
 $\vec{x} > \vec{0}$.

- (a) Show that the maximum value is $2^m 1$.
- (b) Prove that for any feasible solution \vec{x} , we must have $x_k + x_{m+k} \ge 1$ for every $1 \le k \le m$.
- (c) Deduce that, for any basic feasible solution \vec{x} and for any $1 \leq k \leq m$, either x_k or x_{m+k} is a basic variable, but not both.
- (d) Prove that this linear program has exactly 2^m distinct basic feasible solutions.

Bonus (5 pts) Show that the simplex algorithm, starting from the basic feasible solution $\vec{x} = (0, 0, ..., 0, 1, 3, 7, ..., 2^m - 1)$, could visit all 2^m basic feasible solutions before finding the optimum.

²Note the limit in the sum in the objective function: only the first m of the n = 2m variables are summed.