Algorithmic Combinatorics Shagnik Das

Exercise Sheet 12

Due date: 14:00, Jan 31st, by the end of the lecture. Late submissions will be sent a bill for a wall.¹

You should try to solve all of the exercises below, and submit two solutions to be graded — each problem is worth 10 points. We encourage you to submit in pairs, but please remember to indicate the author of each individual solution.

Exercise 1 Alice and Bob play a game. They each pick an integer in $\{1, 2, 3\}$. If the sum of their numbers is odd, Alice pays Bob $\in 10$, while if the sum is even, Bob gives Alice $\in 10$.

- (a) Identify all the (mixed) Nash equilibria. What is the value of the game?
- (b) Alice plays an optimal strategy, but notices that Bob is choosing his number uniformly at random. How should she adjust her strategy to take advantage of his mistake?
- (c) After Alice makes this change, Bob starts losing money quickly. Observing that there are only 4 ways he can win, but 5 ways for Alice to win, he suggests that he should only have to pay €8 when Alice wins. Should Alice agree to these new terms?

Exercise 2 A father plays Rock-Paper-Scissors with his daughter. However, there is a slight twist — while he can choose any of rock, paper or scissors, she is only allowed to choose rock or paper. The rules otherwise remain the same: paper beats rock, rock beats scissors, and scissors beats paper. Determine the optimal strategies for each player in these conditions.

¹It's gonna be yuge!

Exercise 3 In a non-zero-sum two-player game, each player has their own payoff matrix. If Alice plays strategy *i* and Bob plays strategy *j*, then Alice receives a payoff of $a_{i,j}$, while Bob receives a payoff of $b_{i,j}$. A pair of mixed strategies, \vec{x}_0 for Alice and \vec{y}_0 for Bob, is a (mixed) Nash equilibrium if neither player can improve their payoff by changing their strategy alone.² That is, for any other mixed strategies \vec{x} and \vec{y} , $\vec{x}_0^T A \vec{y}_0 \geq \vec{x}^T A \vec{y}_0$ and $\vec{x}_0^T B \vec{y}_0 \geq \vec{x}_0^T B \vec{y}$.

Consider a game with the following payoff matrices.

$(a_{i,j}, b_{i,j})$	j = 1	j=2	j = 3
i = 1	(4,7)	(6, -1)	(1,5)
i=2	(6, 1)	(4, 5)	(-3,0)
i = 3	(2,3)	(5,5)	(4, 1)

- (a) Show that neither player would ever play their third strategy in any Nash equilibrium.
- (b) Show that there is no pure Nash equilibrium.³
- (c) Find a mixed Nash equilibrium.

Exercise 4 If \vec{G} is a directed graph with *n* vertices and *m* arcs, we define a matrix $A(\vec{G})$ as follows. $A(\vec{G})$ is an $n \times m$ matrix with rows corresponding to the vertices of \vec{G} , and columns corresponding to the arcs of \vec{G} . The entry $A(\vec{G})_{v,e}$ on row $v \in V(\vec{G})$ and column $e \in E(\vec{G})$ is 1 if the arc *e* starts at v, -1 if the arc *e* ends at v, and 0 otherwise.

- (a) Suppose \vec{C} is a directed graph whose underlying undirected graph is a cycle (\vec{C} itself need not be a directed cycle). Prove that $\det(A(\vec{C})) = 0$.
- (b) Prove that for any directed graph \vec{G} , $A(\vec{G})$ is totally unimodular.
- (c) Deduce that a flow network with integer capacities has an integer-valued optimal flow.

Exercise 5 Let \mathcal{D} be a finite collection of congruent closed disks in the plane, such that any two have a point in common. Show that \mathcal{D} has a transversal of size 4.

[Hint at http://discretemath.imp.fu-berlin.de/DMII-2016-17/hints/S12.html.]

Exercise 6 Let \mathcal{J} be a finite family of *d*-intervals not containing three pairwise-disjoint *d*-intervals; that is, there are no $J_1, J_2, J_3 \in \mathcal{J}$ with $J_i \cap J_j = \emptyset$ for every $1 \leq i < j \leq 3$. Show that \mathcal{J} has a transversal of size $4d^2$.

[Hint at http://discretemath.imp.fu-berlin.de/DMII-2016-17/hints/S12.html.]

 $^{^{2}}$ Note that, unlike in zero-sum two-player games, the players may be able to improve their payoffs if they *both* change their strategies together.

³That is, one where the players always play the same strategy.