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Exercise Sheet 13

Due date: 14:00, Feb 7th, by the end of the lecture.
Late submissions will be forgotten, but not forgiven.

You should try to solve all of the exercises below, and submit two solutions to be graded —
each problem is worth 10 points. We encourage you to submit in pairs, but please remember
to indicate the author of each individual solution.

Exercise 1 You use a matrix multiplication service of questionable repute to compute the
product of two n × n matrices, A and B, and receive a matrix C, together with a hefty
bill. To check that the answer is correct, you run the randomised verification algorithm,
multiplying both C and AB by a random vector ~x ∈ {0, 1}n.

(a) How many times do you have to run the algorithm to have at least 95% confidence in
the outcome?

Suppose you run the algorithm, and find that C~x 6= AB~x. This proves the existence of a
mistake. However, in order to get your money back, you need to explicitly find a mistake;
that is, find some i and j such that Cij 6= (AB)ij.

(b) How many more arithmetic operations will this take?

[Hint at http://discretemath.imp.fu-berlin.de/DMII-2016-17/hints/S13.html.]

Exercise 2 Let k ≥ 1 be some integer, and let A and B be two 2k × 2k matrices. We wish
to efficiently compute C = AB. We express these in terms of 2k−1 × 2k−1 submatrices:

A =

(
A1,1 A1,2

A2,1 A2,2

)
, B =

(
B1,1 B1,2

B2,1 B2,2

)
, and C =

(
C1,1 C1,2

C2,1 C2,2

)
.

We now define some new matrices:

M1 = (A1,1 + A2,2)(B1,1 +B2,2), M2 = (A2,1 + A2,2)B1,1, M3 = A1,1(B1,2 −B2,2),
M4 = A2,2(B2,1 −B1,1), M5 = (A1,1 + A1,2)B2,2, M6 = (A2,1 − A1,1)(B1,1 +B1,2),

and M7 = (A1,2 − A2,2)(B2,1 +B2,2).

(a) Verify the identities C1,1 = M1 + M4 −M5 + M7, C1,2 = M3 + M5, C2,1 = M2 + M4,
and C2,2 = M1 −M2 +M3 +M6.

(b) One can reuse these identities to calculate the products in the definition of the matrices
Mi, leading to a recursive algorithm for computing the product C = AB. Estimate
the running time (in terms of the number of arithmetic operations) of this algorithm.

(c) For general integers n ≥ 1, how can this algorithm be applied to n× n matrices?
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Exercise 3 Let f ∈ F[x1, x2, . . . , xn] be a non-zero polynomial, and let di be the degree of
f in the variable xi; that is, di is the maximum power of xi appearing in f . Let S ⊆ F be a
finite set with |S| ≥ maxi di.

(a) Prove that f can have at most |S|n −
∏n

i=1 (|S| − di) zeroes in Sn.

(b) For any given values d1, . . . , dn ∈ N∪{0}, and a set S ⊆ F with |S| ≥ maxi di, construct
a polynomial whose degree in xi is at most di, 1 ≤ i ≤ n, for which the bound in (a)
is tight.

[Hint at http://discretemath.imp.fu-berlin.de/DMII-2016-17/hints/S13.html.]

Exercise 4 In lecture we saw a randomised algorithm for determining if there is a perfect
matching in a bipartite graph with n vertices in each part.

(a) Using this algorithm, explain how one can find a perfect matching, if it exists, in such
a graph.

(b) If it takes O(nω) operations to find the determinant of an n × n matrix, how many
operations does your matching-finding algorithm require?

Exercise 5 Suppose we have some univariate polynomial p ∈ F[x] of degree at most d that
we only have oracle access to, so that for any input y ∈ F, we are told the value p(y).

(a) Explain how we can determine the coefficient of xk with at most d+ 1 oracle queries.

Suppose now we have a bipartite graph G = (U ∪ V,E) with |U | = |V | = n, and suppose
further that the edges E are coloured red or blue.

(b) Using part (a), explain how we can extend the randomised perfect matching testing
algorithm to test whether or not there is a perfect matching of G with exactly k red
edges.
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Exercise 6 This exercise will show you how to extend our randomised perfect matching
algorithm for bipartite graphs to general graphs. Let G = ([n], E) be a graph on n vertices.
As before, we introduce a new variable xij for each edge {i, j} ∈ E. The Tutte matrix A of
the graph G is defined as A = (aij)i,j∈[n], where

aij =


+xij if i < j and {i, j} ∈ E,
−xji if i > j and {i, j} ∈ E,
0 otherwise.

(a) Find both the Tutte matrix A and its determinant det(A) when G = K3 and G = C4.

(b) Show det(A) is not the zero polynomial if G has a perfect matching.

We can think of a permutation π ∈ Sn in terms of its cycle structure1, which allows us to
define sgn(π) = (−1)# even cycles in π. We then have det(A) =

∑
π∈Sn

sgn(π)
∏

i∈[n] aiπ(i).

(c) If we think of isolated edges as cycles of length two, show that any nonzero monomial
in this expansion of det(A) corresponds to a partition of [n] into vertex-disjoint cycles
in G.

(d) By reversing the direction of an odd cycle, show that if det(A) is not the zero polyno-
mial, then there is some partition of [n] into vertex-disjoint cycles in G, all of which
have even length.

(e) Deduce that det(A) is not the zero polynomial if and only if G has a perfect matching,
and give a randomised algorithm for testing for the existence of a perfect matching in
G.

1For example, if n = 6 and π(1) = 2, π(2) = 5, π(3) = 4, π(4) = 3, π(5) = 1 and π(6) = 6, then π has
cycle structure (1 2 5) (3 4) (6).
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