Algorithmic Combinatorics Wi 2016-17
Shagnik Das Tibor Szabd

Exercise Sheet 1

Due date: 14:00, Oct 25th, by the end of the lecture.
Late submissions will be erased and written over, a la the Palimpsest.

You should try to solve all of the exercises below, and submit two solutions to be graded —

each problem is worth 10 points. We encourage you to submit in pairs, but please remember
to indicate the author of each individual solution.

Exercise 1 Consider the following algorithm to find the minimum of a set of 2 numbers.

Algorithm: MIN
Data: A= {a,...,a,},n=2F>2
Result: MIN(A) = min{ay,...,a,}

if n = 2 then
if a1 < a then
‘ return as;
else
‘ return as;
end
else
for 1 <i<n/2do
‘ set y; = MIN({ag; 1, azi});
end
return MIN({y1, ..., yn/2});
end

(a) Show that the MIN algorithm requires n— 1 comparisons to find the minimum element,
and that this is the best possible.

(b) After running the MIN algorithm to find the minimal element, how many additional
comparisons are required to find the second-smallest element?

(c) Deduce a sorting algorithm that requires ~ nlog, n comparisons to sort n = 2* ele-
ments.

Exercise 2 Consider the following game. I think of an integer x between 1 and n, and
your job is to try and determine x. You are allowed to ask questions of the form “Is z < y?7”
or “Is z > y?” for any y.

(a) Show that you can find = with only [log, n| questions, and that this is best possible.

To make your job slightly harder, I am now allowed to lie to you at most &k times, for some
constant k.

(b) How many questions do you now need to determine x? Provide the best lower and
upper bounds that you can find.

Exercise 3 A man has just bought n horses, and wants to order the horses by speed.
However, his private racecourse only has three lanes, so he can only race three of his horses
against each other at a time and determine their relative order]l]

(a) Prove that at least [logg(n!)] races are needed to order the horses.

(b) Show that the horses can be ordered within at most ~ nlogs n races.

Bonus (5 pts) The above bounds are separated by a constant factor. Can you give better
bounds to close this gap?

Exercise 4 Given a connected graph G and an arbitrary vertex vy € V(G), show that the
breadth-first search starting at vy returns a tree Tz that preserves distanceﬂ to vg; that is,
for every v € V(G), dg(vo,v) = dry, (vo, v).

Exercise 5 Show that the first m edges added in Kruskal’s algorithm form a m-edge forest
of minimum weight.

'He allows sufficient breaks between the races so that the horses do not get tired, and their performance
is an accurate reflection of their speed.

2In an unweighted graph G = (V, E), the distance dg(u,v) between vertices u,v € V is the minimum
length of a path from u to v. If w and v are in separate connected components, we may take their distance
to be infinite.

Exercise 6 Somebody suggests the following algorithm for building a minimum weight
spanning tree, with the additional feature of always having a connected subgraph throughout
the process.

Algorithm: LIGHT SPANNER

Data: A connected graph G = ([n], E),w : E — R
Result: LIGHT SPANNER(G,w) = T C E, a minimum weight spanning tree of the
component of the vertex 1

/* Initialisation: sort edges, start with empty tree at vertex 1 */
Sort edges by weight, E = {ey,ea,...,en}, w(e;) <w(e;) forall i < j ;
Set C'= {1} ;
Set T =0 ;
/* Build tree: always add lightest edge extending component C */
while true do
1=1;
while i <m do // look for first edge extending C'
if |e; N C| =1 then // found edge extending C
T=TU{e};
C =CUe;
break;
end
1=1+1;
end
if i=m+ 1 then // no edge extended (', so (' is a connected component
‘ return 7
end
end

Will this even greedier algorithm succeed? Either prove its correctness or demonstrate
some input on which it fails.

