
Algorithmic Combinatorics Wi 2016–17
Shagnik Das Tibor Szabó

Exercise Sheet 2

Due date: 14:00, Nov 1st, by the end of the lecture.
Late submissions will be exterminated.

You should try to solve all of the exercises below, and submit two solutions to be graded —
each problem is worth 10 points. We encourage you to submit in pairs, but please remember
to indicate the author of each individual solution.

Exercise 1 The purpose of this exercise is to show that the greedy algorithm does not
always work.

(a) Explain how you would change Kruskal’s algorithm (as simply as possible) for the
Travelling Salesman Problem on complete graphs with positive edge weights: try to
greedily build a Hamilton cycle of minimum weight.

(b) Show that for every α > 1, there is an edge-weighted graph for which the greedy
algorithm builds a Hamilton cycle whose weight is at least α times larger than the
optimum.

Exercise 2 Show that there is a polynomial-time 1.5-approximation algorithm to the Trav-
elling Salesman Problem on non-negatively weighted complete graphs (Kn, ω) satisfying the
triangle inequality: for all u, v, x ∈ V (Kn), ω({u, v}) ≤ ω({u, x}) + ω({x, v}).

[Hint at http://discretemath.imp.fu-berlin.de/DMII-2016-17/hints/S02.html.]

Exercise 3 Assuming P 6= NP , prove for every α > 1 that there is no polynomial-time α-
approximation algorithm to the Travelling Salesman Problem on weighted complete graphs.

Bonus (7 pts) Wouldn’t it be nice if the above statement was meaningful? Show that it
is by proving P 6= NP .

1

http://discretemath.imp.fu-berlin.de/DMII-2016-17/hints/S02.html


Exercise 4 When running Dijkstra’s algorithm to find the lightest paths in a weighted
graph, we required the edge weights to be non-negative. The following algorithm is designed
to find lightest paths in directed graphs that may have negative edge weights.

Algorithm: LIGHTPATHS

Data: A directed graph G = ([n], ~E), edge weights ω : ~E → R, root vertex u ∈ [n]
Result: LIGHTPATHS(G,ω, u) computes, when possible, for every vertex v ∈ [n] a

lightest directed path (with total weight) from u to v in (G,ω).

/* Initialisation: start with infinite distance bounds and empty

paths, except for the root u */

Set dist[u] = 0;
for v ∈ [n] \ {u} do

Set dist[v] =∞ ;
Set prev[v] = null;

end
/* Repeatedly check edges to see if we can improve current paths */

for 1 ≤ i ≤ n− 1 do

for edge (x, y) ∈ ~E do // check if edge gives shorter paths from u
if dist[x] + ω((x, y)) < dist[y] then

Set dist[y] = dist[x] + ω((x, y));
Set prev[y] = x;

end

end

end
/* Run through edges once more to check for %%%%%%%% %%%%% */

for edge (x, y) ∈ E do
if dist[x] + ω((x, y)) < dist[y] then

Return error: graph has a %%%%%%%% %%%%% ;
end

end

(a) Unfortunately the pseudocode got corrupted, and some words were lost. What words
should replace the ‘%’ characters towards the end?

(b) Prove that the algorithm runs correctly. What is its running time?

[Hint at http://discretemath.imp.fu-berlin.de/DMII-2016-17/hints/S02.html.]

2

http://discretemath.imp.fu-berlin.de/DMII-2016-17/hints/S02.html


The next couple of exercises concern SAT — the Boolean satisfiability problem — for
which we now define the necessarily terminology. A Boolean variable is a variable that can
take one of two variables: True or False. A Boolean formula f(x1, x2, . . . , xn) is simply a
function f : {True,False}n → {True,False}. In other words, it takes as input a number of
Boolean variables, x1, x2, . . . , xn, and for every possible truth assignment to these variables,
evaluates to either True or False. A Boolean formula f is said to be satisfiable if there is
some assignment of truth values to its inputs for which f evaluates to True.

Every Boolean formula can be represented by combining the Boolean input variables
with three logical operators: ‘∧’ (and), ‘∨’ (or) and ‘¬’ (not). In particular, every formula
has a Conjunctive Normal Form (CNF). A literal is either a variable xi or its negation ¬xi.
A clause is the ‘or’ of several literals, so it is satisfied if any one of its literals is. Finally,
the CNF formula is the ‘and’ of all its clauses, and is thus satisfied if and only if all of its
clauses are. The Boolean satisfiability problem is the decision problem asking whether or
not a given CNF formula is satisfiable.

A k-CNF formula consists of clauses with exactly k literals1, each corresponding to dif-
ferent variables2. For example, the following is a 4-CNF formula:

f(x1, x2, x3, x4, x5, x6) = (x1 ∨ ¬x2 ∨ x4 ∨ ¬x5)∧(x2 ∨ x3 ∨ ¬x4 ∨ x6)∧(x1 ∨ ¬x2 ∨ x5 ∨ ¬x6) .

This formula is satisfiable, since, for example, f(True,False,True,True,False,False) = True.
In general, the k-satisfiability (k-SAT) problem is the Boolean satisfiability problem re-
stricted to k-CNFs.

Exercise 5

(a) Provide an example of an unsatisfiable instance of k-SAT.

(b) Show that every instance of k-SAT with fewer than 2k clauses must be satisfiable.

Exercise 6

(a) Show that 2-SAT is in P .

(b) Prove that SAT can be (polynomially) reduced to 3-SAT.

1Some authors would only ask that there only be at most k literals. However, these are essentially
equivalent, since given a clause C with fewer than k literals, we can introduce a new variable y, and replace
C with the logically-equivalent (C ∨ y) ∧ (C ∨ ¬y).

2Having literals with the same variable is redundant: x ∨ x is just x, while x ∨ ¬x is always True.

3


